

Report on Detailed Site Investigation (Contamination)

New High School for Googong

200 Wellsvale Drive, Googong

Prepared for NSW Department of Education

Project 224779.00

29 January 2025

Document History

Details

Project No.	224779.00
Document Title	Report on Detailed Site Investigation (Contamination)
Site Address	200 Wellsvale Drive, Googong
Report Prepared For	NSW Department of Education
Filename	224779.00.R.005.Rev0

Status and Review

Status	Prepared by	Reviewed by	Date issued
Revision 0	David Walker	Paul Gorman	29 January 2025

Distribution of Copies

Status	Issued to
Revision 0	Zara Gander, Colliers

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	•	Date
Author	P. Well	29 January 2025
Reviewer	P. Jorman	29 January 2025

Douglas Partners acknowledges Australia's First Peoples as the Traditional Owners of the Land and Sea on which we operate. We pay our respects to Elders past and present and to all Aboriginal and Torres Strait Islander peoples across the many communities in which we live, visit and work. We recognise and respect their ongoing cultural and spiritual connection to Country.

Executive Summary

Douglas Partners Pty Ltd (Douglas) has been engaged by NSW Department of Education (DoE) to prepare this detailed site investigation for contamination (DSIC) report to inform a Review of Environment Factors (REF) for the proposed construction of a new high school for Googong located at 200 Wellsvale Drive, Googong. The 'site' for the new high school for Googong is part of Lot 829 Deposited Plan 1277372.

The methodology, data and findings presented in this report are based on that obtained for a larger land area (Lot 829 DP1277372) (reported in Douglas, 2024). Douglas has also previously completed a preliminary site investigation (PSI) for Lot 829 DP1277372 (referred to herein as the Lot). The PSI identified two potential sources of contamination at the site comprising: possible contaminated fill / residual impacted soil; and activities associated with the (recent) use of the site as a construction compound.

The objective of the DSIC is to assess the contamination status of the site and the suitability of its use for the proposed development and comment whether further investigation and/or management of contamination is required with regard to the proposed development. This report also presents preliminary waste classification comments to inform planning for future civil and construction works.

Based on the review of available site history information, it was considered that the Lot had historically been used for grazing from the mid to late 1800's until sometime around 2017, when development of the broader Googong Township commenced in the surrounding area. Aerial photography indicated that it was around this time that various sections of the Lot began to be used as a construction compound to support the surrounding developments. The compound areas appeared to be used for storage of various construction materials, earthwork machinery, vehicles and soil stockpiling.

Douglas reviewed a Site Audit Report (SAR) and Site Audit Statement (SAS) previously prepared for the Lot (HEC, 2023). Previous investigation reports were reviewed by the Auditor for the site audit. Of particular note:

- A contamination report, acknowledged as Geotechnique (2016), identified two areas of environmental concern (AECs) at land adjacent to the north of the site, comprising a naturally occurring hematite outcrop and a waste material zone. Elevated heavy metal concentrations (specifically arsenic, lead, manganese and zinc) were recorded in soil samples from test pits at adjacent land to the north of the site. The elevated heavy metals were considered to be associated with the hematite zone.
- A detailed contamination investigation, acknowledged as Geotechnique (2017), was conducted to delineate concentrations of contaminants in soil identified at the hematite zone to the north through the excavation of 226 test pits (17 of which were located within the site). Laboratory analysis confirmed that soils impacted with metals at the hematite zone extended into the northern portion of the site.
- A remediation action plan (RAP), acknowledged as Geotechnique (2018), was prepared to remediate the impacted soils located within the site boundary and adjacent land to the north.

- The reported remediation and validation works, acknowledged as Geotechnique (2021), were carried out in several stages between May 2019 to April 2021. The remediation works in 'Area 2' which was partially within the site boundary, included the excavation of arsenic, lead and manganese contaminated soil for off-site disposal to landfill. Further remediation at 'Area 3' included the excavation of arsenic, lead, manganese and zinc impacted soil for reuse at commercial and road areas in the surrounding land. The area of remediated land located within the Lot boundary was estimated to be 5950 m², with the depth of excavations ranging from 0.5 m to 2.0 m below ground level (bgl).
- The report acknowledged as Terravale Consulting (2021) was a health risk assessment of the elevated metals in soil to determine if the soil was suitable to remain at its location; and to determine if the material was suitable for beneficial re-use under public roadways. Based on bioavailability test results for arsenic and manganese in soil, revised arsenic and manganese (site-specific) screening criteria were determined to be above the maximum reported concentrations of these metals, and further assessment of arsenic and manganese was not required. Site-specific screening criteria for lead were also determined. Based on the available soil sampling data at the time, it was stated that the site-specific lead criteria had not been exceeded.

The Auditor considered that the site investigation, remediation and validation was undertaken appropriately and had confirmed that the Lot had been rendered suitable for the proposed land uses as a primary and secondary school, and that no further investigation or remediation is required.

During an initial site walkover for the PSI (27 September 2023), Douglas observed that the Lot was mostly vacant, except for a construction compound present in the south western corner. Minor amounts of construction materials were sporadically observed on the ground surface. Douglas conducted a subsequent walkover (8 November 2023), following the removal of the compound in the south western corner of the Lot. The overall condition of the Lot appeared generally consistent with the previous walkover, and the recently demobilised compound area appeared vacant except for minor amounts of remaining construction items / materials.

Field work for the DSIC comprised soil sampling from six boreholes (Bores 201 to 206) and 20 test pits excavated using hand tools (Pits 207 and 226) at the Lot.

Selected soil samples were analysed for combinations of: metals; total recoverable hydrocarbons (TRH); benzene, toluene, ethylbenzene and xylene (BTEX); polycyclic aromatic hydrocarbons (PAH), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), polychlorinated biphenyls (PCB), total phenolics and asbestos. Analytical results for samples collected from the site were within the adopted site assessment criteria (SAC) except for:

- Arsenic concentrations in excess of EIL for the following samples:
 - o Bore 201, depth 0.1 m (100 mg/kg and 67 mg/kg);
 - o Bore 201, depth 0.5 m (57 mg/kg);
 - o Bore 201, depth 0.5 m (57 mg/kg);
 - o Bore 202, depth 0.5 m (59 mg/kg);
 - o Bore 203, depth 0.1 m (53 mg/kg)
 - o Bore 206, depth 0.1 m (97 mg/kg);

- o Bore 206, depth 0.5 m (180 mg/kg);
- o Pit 207, depth 0.1 m (66 mg/kg);
- o Pit 208, depth 0.1 m (93 mg/kg); and
- o Pit 220, depth 0.25 0.3 m (82 mg/kg);
- The lead concentration for the primary analysis of the sample from Bore 201 at depth 0.1 m (370 mg/kg) which exceeded the EIL for fresh contaminants;
- Zinc concentrations in the following samples which exceeded the EIL for fresh contaminants:
 - o Bore 202, depth 1.0 m (340 mg/kg);
 - o Bore 206, depth 0.5 m (490 mg/kg); and
 - o Pit 208, depth 0.1 m (290 mg/kg).

Somewhat elevated concentrations of metals were recorded with respect to EIL (as listed above), however, the recorded metals concentrations are considered to be as a result of the local natural soil / bedrock and not indicative of contamination. The recorded concentrations of metals above the EIL are considered to not to be of significance with respect to the protection of local terrestrial organisms (i.e. flora and fauna). As such, it is considered that the site has a low risk to identified ecological receptors (flora and fauna) and is suitable for the proposed development.

Recorded concentrations of contaminants for the site were within health-based criteria.

Based on the results of the investigation, whilst incorporating information presented in the SAR, it is considered that the site is suitable for the proposed development of a new high school from a contaminated land perspective.

Results presented in this investigation, when considering the information presented in the SAR, indicate that site remediation is not required. It is noted, however, that high concentrations of naturally-occurring metals (at concentrations above health-based assessment criteria) may be associated with bedrock (at untested locations / depths). Therefore, it may be appropriate (for an environmental consultant) to conduct check sampling and analysis for metals on excavated bedrock that is proposed to be reused at the site as fill, to confirm (or otherwise) the suitability of the material.

Given the presence of widespread fill at the site, albeit assessed to be at a low contamination risk, it is recommended that an unexpected finds protocol (UFP) be developed and implemented during future civil and construction works such that any unexpected finds of contamination (or potential contamination) is appropriately assessed and managed.

Glossary of Terms

АСМ	asbestos-containing materials
AEC	area of environmental concern
AF	asbestos fines
AHD	Australian height datum
ANZECC	Australian and New Zealand Environmental & Conservation Council
AS	Australian Standard
As	arsenic
ASS	acid sulfate soils
B(a)P	benzo(a)pyrene
bgl	below ground level
BTEX	benzene, toluene, ethylbenzene, total xylenes (monocyclic aromatic hydrocarbons)
CEC	cation exchange capacity
CoPC	contaminants of potential concern
CSM	conceptual site model
Cr	chromium
CTI	contaminant threshold 1
CT2	contaminant threshold 2
Cu	copper
DA	development application
dGPS	differential global positioning system
DQI	data quality indicators
DQO	data quality objectives
DSIC	detailed site investigation for contamination
Douglas	Douglas Partners Pty Ltd
e.g.	for example

EIL	ecological investigation levels
EP&A Act	Environmental Planning and Assessment Act 1979
EPA	Environment Protection Authority
etc	et cetera
FA	friable asbestos
ha	hectare
Hg	Mercury
HIL	health investigation level
HSL	health screening level
i.e.	that is
IAA	interim audit advice
Ltd	limited
m	metre
m ²	square meter
Mn	manganese
mg/kg	milligrams per kilogram (or parts per million)
NATA	National Association of Testing Authorities
NEPC	National Environmental Protection Council
NEPM	National Environment Protection Measure
Ni	nickel
NSW	New South Wales
OCP	organochlorine pesticides
OEH	Office of Environment and Heritage
OPP	organophosphorus pesticides
P1-P5	pathway in the conceptual site model
PAH	polycyclic aromatic hydrocarbons

Pb	Lead
РСВ	polychlorinated biphenyls
рН	power of hydrogen
POEO	Protection of the Environment Operations
PQL	practical quantitation limit
PSI	preliminary site investigation
QA	quality assurance
QC	quality control
QPRC	Queanbeyan-Palerang Regional Council
R1-R7	receptor in the conceptual site model
RAP	remedial action plan
REF	Review of Environment Factors
RL	reduced level
RPD	relative percentage difference
RRO	Resource Recovery Order
S1-S2	source in the conceptual site model
SAC	site assessment criteria
SAR	Site Audit Report
SAS	Site Audit Statement
SCC1	specific contaminant concentration 1
TCLPI	toxicity characteristics leaching procedure 1
TPH	total petroleum hydrocarbons
TRH	total recoverable hydrocarbons (a screening test for TPH)
UCL	upper confidence limit
UFP	unexpected finds protocol
VOC	volatile organic compounds

- Zn zinc % percent
- < less than
- > greater than

Table of Contents

			Page No
1.	Intro	oduction	1
2.	Prop	oosed development	2
3.	Scop	be of work	2
4.	Site	information	
5.	Envi	ronmental setting	
	5.1	Topography	
	5.2	Site geology	
	5.3	Acid sulfate soils	5
	5.4	Surface water and groundwater	6
6.	Prev	ious reports	6
7.	Preli	minary conceptual site model	9
8.	Sam	pling and analysis quality plan	11
	8.1	Data quality objectives	11
	8.2	Soil sampling rationale	11
	8.3	Analytical rationale	
9.	Site	assessment criteria	12
10.	Resu	ılts	
	10.1	Field work results	
	10.2	Laboratory analytical results	
11.	Disc	ussion	
	11.1	Soils	
	11.2	Preliminary waste classification comments	
	11.3	Natural soil and rock	
	11.4	Data quality assurance and quality control	19
12.	Con	clusions and Recommendations	
	12.1	Site suitability	
	12.2	Recommendations and mitigation measures	19
13.	Refe	rences	19
14.	Limi	tations	20

- **Appendix B:** About This Report
- Appendix C: Site Audit Statement
- Appendix D: Data Quality Objectives
- Appendix E: Field Work Methodology
- Appendix F: Site Assessment Criteria
- Appendix G: Photographs
- Appendix H: Borehole Logs and Test Pit Logs
- Appendix I: Summary of Results Tables
- **Appendix J:** Chain of Custody, Laboratory Sample Receipt Advice and Certificates of Analysis
- Appendix K: Data Quality Assurance and Quality Control

Report on Detailed Site Investigation (Contamination) New High School for Googong 200 Wellsvale Drive, Googong

1. Introduction

Douglas Partners Pty Ltd (Douglas) has been engaged by NSW Department of Education (DoE) to prepare this detailed site investigation for contamination (DSIC) report to inform a Review of Environment Factors (REF) for the proposed construction of a new high school for Googong located at 200 Wellsvale Drive, Googong (hereinafter referred to as 'the site'). The site is shown on Drawing R.005.D.001, Appendix A. It is understood that DoE is the determining authority for the project under Part 5 of the *Environmental Planning and Assessment Act 1979* (EP&A Act).

The methodology, data and findings presented in this report are based on that obtained for: Douglas, Report on Detailed Site Investigation (Contamination), Proposed New Public School, 200 Drive. Wellsvale Googong, Prepared for School Infrastructure. reference 224779.00.R.003.Rev2, 16 February 2024 (Douglas, 2024) which was conducted for a larger land area (Lot 829 Deposited Plan 1277372) for due diligence purposes and potentially for a development application (DA). Douglas has also previously completed a preliminary site investigation for the larger land area as reported in Douglas, Report on Preliminary Site Investigation (Contamination), Proposed New Public School, 200 Wellsvale Drive, Googong, Prepared for School Infrastructure, reference 224779.00.R.001.Rev0, 15 November 2023 (Douglas, 2023). The PSI identified two potential sources of contamination at the site comprising: possible contaminated fill / residual impacted soil; and activities associated with the (recent) use of the site as a construction compound.

The objective of the DSIC is to assess the contamination status of the site and the suitability of its use for the proposed development and comment whether further investigation and/or management of contamination is required with regard to the proposed development. This report also presents preliminary waste classification comments to inform planning for future civil and construction works.

The field work for this DSIC was undertaken concurrently with a geotechnical investigation which is provided under a separate cover (reference 224779.00.R.004.Rev2).

This report must be read in conjunction with all appendices including the notes provided in Appendix B.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [the 'NEPM'] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

2. Proposed development

It is understood that the proposed development at the site will comprise construction of a high school (years 7 to 12) to accommodate up to 700 students. A site plan for the proposed development is provided in Appendix A. The proposed development of the site includes:

- Building A: a three to four-storey building in the north-western portion of the site, fronting Glenrock Drive to accommodate learning spaces and administrative functions of the school;
- Building B: a three-storey building in the northern portion of the site, fronting Observer Street, to accommodate learning spaces and administrative functions of the school;
- Building C: to accommodate a school hall / gymnasium and canteen at the western portion of the site;
- Outdoor recreation areas, cricket nets, a playing court and a playing field;
- Main pedestrian entry from Glenrock Drive;
- A car parking area at the eastern portion of the site, accessed from Wellsvale Drive;
- An on-site stormwater detention (OSD) tank beneath the northern portion of the car parking area;
- Accessible pedestrian entry from Wellsvale Drive;
- Service entry from Observer Street; and
- Areas of landscaping.

The southern portion of the site is designated as an area for potential future school expansion.

According to the bulk earthworks plan (reference sheet CV-2100 rev G, project No. PS140230, 5 May 2024):

- Stripping will result in the excavation of approximately 8200 m³ of material;
- Several areas of the site will be subject to bulk excavation including at the south-eastern, central, and north-western portions of the site, as well as for the OSD tank at the eastern portion of the site. These bulk excavations will be to depths of up to approximately 3 m and result in the excavation of approximately 24, 838 m³ of material;
- Approximately 24, 823 m³ of material from bulk excavations will be used onsite as fill. Large portions of the site will be filled with the deepest fill (up to 4 m) to be placed at the north-eastern and western portions of the site.

3. Scope of work

The scope of work for this DSIC was to report on the components of Douglas (2024) relevant to the new high school for Googong project. The scope of works for Douglas (2024) comprised:

- Drilling of six boreholes (Bores 201 to 206) using a track-mounted drilling rig to termination depths of between 5.6 m and 7.0 m bgl;
- Excavation of 20 test pits (Pits 207 to 226) using hand tools to termination depths of between 0.1 and 0.5 m bgl;

- Collection of replicate soil samples for field screening with a calibrated photo-ionisation detector (PID) to detect for the presence or absence of volatile organic compounds (VOC) and to assist with the selection of samples for analysis;
- Logging of soil and rock conditions encountered at each investigation location;
- Laboratory analysis of selected soil samples at a National Association of Testing Authorities (NATA) accredited laboratory for various combinations of the following:
 - Metals (arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel and zinc);
 - Polycyclic aromatic hydrocarbons (PAH);
 - o Total recoverable hydrocarbons (TRH)
 - o Benzene, toluene, ethylbenzene and xylene (BTEX);
 - o Total phenolics;
 - o Organochlorine pesticides (OCP) and organophosphorus pesticides (OPP);
 - o Polychlorinated biphenyls (PCB); and
 - o Asbestos;
- Analysis of selected samples for pH and cation exchange capacity (CEC) for the purposes of determining site specific ecological investigation levels (EIL);
- Preparation of the Douglas (2024) report.

4. Site information

Site information is summarised below.

Site Address	200 Wellsvale Drive, Googong
Legal Description	Part of Lot 829 Deposited Plan 1277372
Approximate Area	5.84 ha
Zoning	R1 General Residential under the Queanbeyan-Palerang Regional Local Environmental Plan 2022
Local Council Area	Queanbeyan-Palerang Regional Council (QPRC)
Current Site Use	Vacant undeveloped land
Surrounding Land Uses	North – Observer Street, then undeveloped land beyond East – Wellsvale Drive, then (new) residential and sports fields South – Harvey Street, then (new) residential beyond West – Glenrock Drive, then (new) residential beyond

The site boundary is shown on Figure 1.

Figure 1: Site boundary (yellow) and layout (image dated 5 September 2024 from MetroMap)

5. Environmental setting

5.1 Topography

The general topography of the surrounding area has slopes down in a general easterly direction towards the Queanbeyan River and its tributaries.

Surface levels at the site generally fall in easterly and northerly directions at approximate grades of 1 in 15 to 1 in 20. The overall difference in elevation across the site is approximately 12 m, ranging from RL ~763.6 m relative to Australian Height Datum (AHD) in the south-western portion of the site to RL ~751.6 m AHD at the north-eastern portion of the site.

5.2 Site geology

Reference to the NSW Seamless Geology (GSNSW, 2019) digital mapping indicates the site is underlain by both Colinton Volcanics comprising tuffaceous shale ($Sbro_x$) and dacitic tuff

GROUNDED EXPERTISE

Page 5 of 21

(Sbro_d) of Silurian age as shown on Figure 2. These volcanics generally comprise foliated dacite and tuff, with interbedded siltstone lenses. A fault is mapped as running through the site orientated in a north-east to south-west direction.

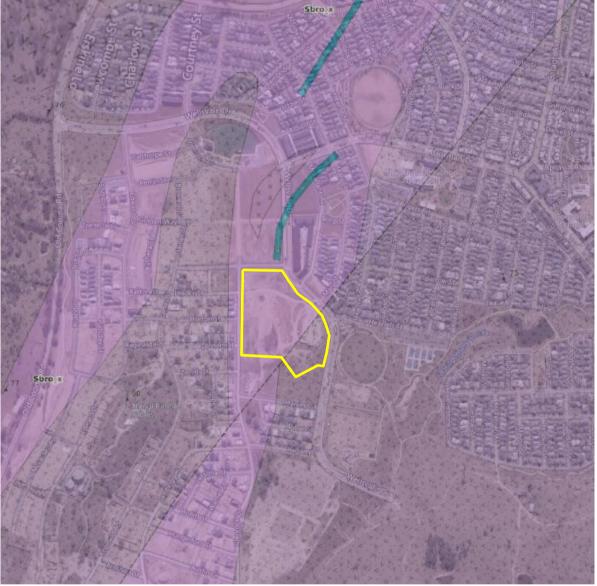


Figure 2: Geological setting (GSNSW, 2019)

Reference to the Soil Landscapes of Eastern and Central Australia v2 Map (Office of Environment and Heritage, 2019) indicates that the site is located within the Burra Soil Landscape which is characterised by undulating to rolling hills and alluvial fans formed on Silurian volcanics.

5.3 Acid sulfate soils

Reference to the NSW Department of Environment and Climate Change Acid Sulfate Soil Risk Mapping digital dataset (NSW DECC, 2008) indicates that the site is located in an area mapped as "*No known occurrence*" of acid sulfate soils (ASS).

5.4 Surface water and groundwater

The nearest surface water body is Montgomery Creek line located approximately 320 m south east of the site. The creek line flows in a general north-easterly direction into Queanbeyan River which is located approximately 3 km north-east of the site. Old farm dams are also located in land surrounding the site.

A search of the WaterNSW groundwater boreholes database on 26 September 2023 indicated that there were no registered groundwater bores within 500 m of the site or within the site boundary.

Given the local geology (shale and tuff belonging to the Colinton Volcanics), regional groundwater is considered to most likely be hosted in low-permeability fractured rock aquifers. Based on the regional topography and the inferred flow direction of nearby water courses, the anticipated flow direction of shallow groundwater is to the east or north-east, towards the Queanbeyan River, the likely receiving surface water body for the groundwater flow path.

6. Previous reports

6.1 **Previous Douglas geotechnical works**

Previous to works for Douglas (2024), Douglas conducted geotechnical investigations and controlled fill earthworks for the broader Googong Township development area of which the current site is part of.

The subsurface conditions encountered at Lot 829 DP1277372 (also referred to herein as the Lot, as shown on Drawing R.005.D.001 in Appendix A) during intrusive works generally comprised topsoil, silt and clay to depths of between 0.3 m and 1.4 m bgl, underlain by high strength shale and low strength tuff to refusal depths of between 1.2 m and 5.0 m bgl.

Between February 2021 and September 2022, Douglas supervised the placement of controlled fill in the south western, western and northwestern portion of Lot 829 DP 1277372. The material used for the controlled filling was sourced from existing onsite material and mainly comprised rock of varying strength and fracturing, with some residual / alluvial soils.

6.2 Site Audit Report and Site Audit Statement

Robert Harwood, an EPA Accredited Site Auditor (hereinafter referred to as 'the Auditor'), was commissioned by Googong Township Pty Limited to conduct a site audit for various locations within the greater Googong Township development area, including for Lot 829 DP1277372 as reported in:

- Harwood Environmental Consultants (HEC), *Site Audit Report for SAS 439, Googong Neighbourhood 2 School Site LOT 829 DP1277372,* 18 July 2023 (HEC, 2023a) (the 'SAR'); and
- HEC, Site Audit Statement, Googong Neighbourhood 2 School Site LOT 829 DP1277372, 18 July 2023 (HEC, 2023b) (the 'SAS');

The objective of the statutory audit was to provide a statement on the suitability of the Lot for a proposed school development as required by QPRC under DA 123-2017 (approved 10 January 2018).

The scope of works for the audit included a review and evaluation of previous site investigation reports and data, site visits by the Auditor, and preparation of the SAR and SAS. The SAS is provided in Appendix C. The Auditor's key findings from a review and evaluation of relevant previous investigations are summarised below. It is noted that Douglas has not reviewed the investigation reports referred to in the SAR.

The contamination report acknowledged as Coffey (2004) identified that the site had been part of larger grazing (sheep and cattle) property from the mid to late 1800s. It was noted that land in the Googong Township had historically been treated with fertilisers and potentially undergone application of herbicides, pesticides and insecticides.

For a contamination assessment of the site and surrounding land, the report acknowledged as Geotechnique (2016) identified two areas of environmental concern (AECs) at land adjacent to the north of the site, comprising a naturally occurring hematite outcrop and a waste material zone (i.e., rubbish pits of metal sheeting, brick, glass and concrete). No AECs were identified within the Lot boundary. The intrusive investigation included the excavation of test pits (including four positioned within Lot) and laboratory analysis for total petroleum hydrocarbons (TPH), benzene, toluene, ethylene and xylene (BTEX), metals, polycyclic aromatic hydrocarbons (PAH), pesticides and asbestos. The soil profile was reported as topsoil silty clay over natural silty clay to a depth of 2 m below ground level (bgl). Elevated heavy metal concentrations (specifically arsenic, lead, manganese and zinc) were recorded in soil samples from test pits at adjacent land to the north of the site. The elevated heavy metals were considered to be associated with the hematite zone.

A detailed contamination investigation, acknowledged as Geotechnique (2017), was conducted to delineate concentrations of contaminants in soil identified at the hematite zone to the north through the excavation of 226 test pits (17 of which were located within the site). Laboratory analysis confirmed that soils impacted with metals at the hematite zone extended into the northern portion of the site with exceedances of the adopted NEPC (2013) health investigation levels (HIL) for residential land use with access to soils (HIL A) at six of the pit locations. A surface water sample was collected from a dam located in the north eastern corner of the site which recorded a copper concentration that marginally exceeded the ANZECC freshwater guidelines. A groundwater monitoring well was also installed upgradient of the hematite zone (approximately 80m north east of the site) to a depth of 14.5 m bgl to assess the impact on groundwater (if any), however the well was dry which precluded sampling.

A remediation action plan (RAP), acknowledged as Geotechnique (2018), was prepared to remediate the impacted soils located within the site boundary and adjacent land to the north. The reported remediation and validation works, acknowledged as Geotechnique (2021), were carried out in several stages between May 2019 to April 2021. The remediation works in 'Area 2' which was partially within the site boundary, included the excavation of arsenic, lead and manganese contaminated soil for off-site disposal to landfill under the classification of "Restricted Solid Waste". The estimated volume of waste material removed from Area 2 was approximately 1250 m³, however, the Auditor noted that only a small portion of Area 2 was located within the school site boundary. Further remediation at 'Area 3' included the excavation of arsenic, lead, manganese and zinc impacted soil for reuse at commercial and road areas in the surrounding land. The area of remediated land located within the Lot boundary was estimated to be 5950 m²,

with the depth of excavations ranging from 0.5 m to 2.0 m bgl. The approximate location and extent of Area 2 and Area 3 are shown on Drawing R.005.D.001, Appendix A. Validation sampling was undertaken at the excavations. The results of validation sampling and analysis across Area 2A (a sub-area of Area 2) and Area 3 (a sub-area of Area 3) indicated that the 95% UCL for concentrations of arsenic, manganese, lead and zinc were within the site assessment criteria (for residential land use 'A'); the standard deviations for arsenic, manganese, lead and zinc were below 50% of the assessment criteria; and no individual sample result exceeded 250% of the applicable criteria. Areas 2A and 3 are shown on the attached Drawing R.005.D.001, Appendix A.

The report acknowledged as Terravale Consulting (2021) was a health risk assessment of the elevated metals in soil to determine if the soil was suitable to remain at its location; and to determine if the material was suitable for beneficial re-use under public roadways. Based on bioavailability test results for arsenic and manganese in soil, revised arsenic and manganese (site-specific) screening criteria were determined to be above the maximum reported concentrations of these metals, and further assessment of arsenic and manganese was not required. Site-specific screening criteria for lead were also determined. Based on the available soil sampling data at the time, it was stated that the site-specific lead criteria had not been exceeded.

At the request of the Auditor, as part of Geotechnique (2021), six additional boreholes were installed to collect data on the naturally occurring metals within the deeper layer of the hematite zone. One of the boreholes was at the site. The general soil profile was described as:

- 0 0.2 m: topsoil;
- 0.2 1.5 m: silty clay;
- 1.5 2.5 m: weathered slate; and
- 2.5 m: slate.

Soil samples were analysed for arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel and zinc. Arsenic concentrations were recorded to be above the adopted EIL in two samples. A zinc concentration was above the EIL in one sample.

A contaminated stockpile was temporarily placed at the Lot until the commercial zone to the north was ready to receive the stockpile material. Soil samples were collected by Geotechnique (October 2022) from ten boreholes which were advanced through the stockpile footprint and a total of 36 samples were analysed for 13 metals including arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, selenium and zinc. These samples supplemented previously collected samples from Lanterra Consulting in March 2022. Elevated concentrations of manganese were identified in some of the soil samples with the highest concentration at depths below 3 m. It was considered by Geotechnique, with the use of statistical analysis, that the residual soil within the stockpile footprint was suitable for the future school land use.

Following a request from the Auditor, for the report acknowledged as Geotechnique (2023), seven boreholes were drilled in the central and southern extent of Lot to assess the potential for metals contamination. The general soil profile was recorded as:

- 0 0.2 m: topsoil;
- 0.2 4 m: silty clay, medium plasticity, brown; underlain by
- Slate bedrock.

Soil samples were analysed for arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel and zinc, as well as pH and CEC. Concentration of metals were within the assessment criteria (for residential land use 'A').

The Auditor considered that the site investigation, remediation and validation was undertaken appropriately and has confirmed that Lot 829 DP1277372 had been rendered suitable for the proposed land uses as a primary and secondary school, and that no further investigation or remediation is required.

6.3 PSI (Douglas, 2023)

Douglas conducted a PSI at Lot 829 DP1277372 in 2023 to provide preliminary information on the contamination status. The PSI included a review of readily available site information, previous reports relevant to the site (as summarised in Sections 6.1 and 6.2), two site walkovers and preparation of a report.

Based on the review of available site history information, it was considered that the Lot had historically been used for grazing from the mid to late 1800s until sometime around 2017, when development of the broader Googong Township commenced in the surrounding area. Aerial photography indicated that it was around this time that various sections of the Lot began to be used as a construction compound to support the surrounding developments. The compound areas appeared to be used for storage of various construction materials, earthwork machinery, vehicles and soil stockpiling.

During an initial site walkover on 27 September 2023, Douglas observed that the Lot was mostly vacant, except for a construction compound present in the south western corner. Minor amounts of construction materials were sporadically observed on the ground surface. Douglas conducted a subsequent walkover on 8 November 2023, following the removal of the compound in the south western corner of the Lot. The overall condition of the Lot appeared generally consistent with the previous walkover, and the recently demobilised compound area appeared vacant except for minor amounts of remaining construction items / materials (ie, a wheelbarrow, bin and timber pallets).

Based on the site history review and site walkover, Douglas identified two main sources of potential contamination (refer Section 7) comprising fill or residual impacted soil and the recent use of the Lot as a construction compound. It was considered that the potential for contamination from these sources is low.

It was recommended that an intrusive soil investigation including soil sampling and laboratory analysis be conducted to assess the identified potential sources.

7. Preliminary conceptual site model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site may have become contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

Potential sources (S)

Based on the PSI, the following potential sources of contamination and associated contaminants of potential concern (CoPC) have been identified:

- S1: Fill / residual impacted soil (i.e., undetected contamination between and beyond previous test locations). The site has been subject to controlled filling and so the potential for contaminated fill is considered to be low.
 - o Various CoPC may be associated with fill and may include metals, TRH, BTEX, PAH, polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), phenols and asbestos.
 - S2: Activities associated with recent use of the site as a construction compound (e.g., storage of fuels / oils, materials, construction equipment, transient stockpiling of soils).
 - o CoPC may include TRH, BTEX and metals.

Potential receptors (R)

•

The following potential receptors have been identified:

- R1: Construction workers;
- R2: Future maintenance workers;
- R3: End users [students, teachers, visitors];
- R4: Adjacent site users [residential, recreational];
- R5: Groundwater;
- R6: Local terrestrial ecosystems / organisms (i.e., flora and fauna); and
- R7: In-ground Structures.

Potential exposure pathways (P)

The following potential exposure pathways between sources and receptors have been identified:

- P1: Ingestion and dermal contact;
- P2: Inhalation of dust, fibres and/or vapours;
- P3: Leaching of contaminants and vertical migration into groundwater;
- P4: Inhalation, ingestion and absorption; and
- P5: Contact with in-ground structures.

Summary of potentially complete exposure pathways

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 and S2) and receptors (R1 to R7) are provided in Table 1.

Source and CoPC	Transport Pathway	Receptor
	P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	R1: Construction workers R2: Future maintenance workers R3: End users [students, teachers, visitors]
S1: Fill / residual impacted soil S2: Recent construction	P2: Inhalation of dust and/or vapours	R4: Adjacent site users [residential, recreational]
compound land use	P3: Leaching of contaminants and vertical migration into groundwater	R5: Groundwater
	P4: Inhalation, ingestion and absorption	R6: Terrestrial ecosystems
	P5: Contact with in-ground structures	R7: In-ground structures

Table 1: Summary of potentially complete exposure pathways

8. Sampling and analysis quality plan

8.1 Data quality objectives

Douglas (2024) was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The data quality objective process is outlined in Appendix D.

8.2 Soil sampling rationale

Based on the CSM and data quality objectives (DQO), the following sampling rationale was adopted for Douglas (2024).

For a site area of approximately 9 ha, Table 2 of NSW EPA Sampling design part 1 – application, Contaminated Land Guidelines (NSW EPA, 2022) suggests that a minimum of 99 sample locations on a systematic grid pattern are required for site characterisation. Given the generally low potential for contamination at the Lot, the previous remediation work undertaken at the Lot, and the SAS which stated that the Lot is suitable for primary and secondary school use (see Section 6.2), a reduced number of test locations was considered appropriate as a 'check' of the contamination status of the Lot.

A total of 26 test locations were positioned across the Lot. The boreholes (Bores 201 to 206), drilled using a drilling rig, were positioned across the northern portion of the Lot, targeting the proposed high school building footprints primarily for the geotechnical investigation purposes.

The test pit locations (Pits 207 to 226), excavated using hand tools, were positioned to provide coverage of the Lot in addition to the boreholes, with Pits 207 to 210 at the general area of previous

remediation works (see Section 6.2) and Pits 217 to 220 at the most recent construction compound location. The borehole and test pit locations are shown on Drawing R.005.D.001, in Appendix A. As shown in the drawing, Bores 201 to 206, Pits 207 to 213 and Pits 221 to 225 were located at the site.

Soil samples were collected from each borehole at depths of approximately 0.15 m, 0.5 m, 1.0 m and every 0.5 m thereafter, and changes in lithology or signs of contamination. Sampling from test pits was generally limited to shallow depths given refusal was commonly encountered at shallow depths.

The general sampling methods are described in the field work methodology, included in Appendix E.

8.3 Analytical rationale

The majority of soil samples selected for analysis of the CoPC were from fill and surface soils as fill and surface soils were more likely to be contaminated than underlying natural soil (based on the CSM).

9. Site assessment criteria

The site assessment criteria (SAC) applied to the investigation are informed by the CSM (Section 7) which identified human and environmental receptors to potential contamination on the site.

Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013). Given the proposed secondary school use and with reference to NEPC (2013), the adopted investigation and screening levels are those for a Category C land use scenario (applicable to various land uses including secondary schools) except for health screening levels for petroleum hydrocarbons where levels for a Category A land use scenario have been adopted.

The derivation of the SAC is included in Appendix F and adopted SAC are listed on the summary analytical results tables in Appendix I.

10. Results

10.1 Field work results

Field work for the investigation was conducted between 26 and 29 September 2023 (Bores 201 to 206 and Pits 207 to 216) and on 8 November 2023 (Pits 217 to 226).

The borehole and test pit logs for sample locations at the site (Bores 201 to 206, Pits 207 to 213 and Pits 221 to 225) are included in Appendix G. The logs recorded the following general sub-surface profile:

Topsoil / Fill:	Typically comprising silty clay and sandy silt topsoil and fill from the surface to depths of between 0.1 m and 1.1 m bgl.
Residual Clay:	Silty and sandy clays encountered between 0.3 and 6.5 m bgl in Bores 201 to 204 and between 0.1 m and 0.2 m bgl in Pits 207, 209, 210, 212, 222 and 223.
Shale:	Variably very low to high strength, extremely to slightly weathered shale in all boreholes.

No non-soil anthropogenic materials were observed in the boreholes or test pits at the site.

No visual or olfactory evidence (e.g., staining, odours, free phase product) was observed during the investigations to suggest the presence of contamination within the soils at the site.

The PID screening indicated an absence of VOC with all recorded values of less than 1 ppm except for the sample from Pit 213 at depth 0.1 m which detected a value of 1.4 ppm.

No free groundwater was observed during excavation of test pits or drilling of boreholes. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.

Representative photographs of the Lot and subsurface conditions taken during the investigation are provided in Appendix G.

10.2 Laboratory analytical results

The results of laboratory analysis for sample locations at the site are summarised in the following tables in Appendix I:

- Table I1: Summary of Laboratory Results Metals, TRH, BTEX and PAH;
- Table I2: Summary of Laboratory Results Phenols, OCP, OPP, PCB, and Asbestos; and
- Table I3: Summary of Laboratory Results for Preliminary Waste Classification Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB and Asbestos.

The laboratory certificates of analysis together with the chain of custody and sample receipt information is provided in Appendix J.

11. Discussion

11.1 **Soils**

The analytical results for all contaminants tested in analysed samples collected from the site were below the adopted SAC except for those summarised below (refer to Table 2 for a tabulated summary):

Arsenic

• The arsenic concentration in the sample from Bore 206 at depth 0.5 m (180 mg/kg) exceeded the EIL for fresh contaminants (50 mg/kg) and the EIL for aged contaminants (100 mg/kg).

The sample was collected from fill which appears to be sourced locally. Therefore, the origin of the arsenic is considered to be the local natural bedrock (see Section 6.2). Given that the arsenic is of local natural origin and not as a result of a contaminating source, the exceedances of the EIL criterion is not considered to be of significance with respect to the protection of local terrestrial organisms (i.e., flora and fauna);

- The arsenic concentrations exceeded the EIL for fresh contamination in the samples from:
 - o Bore 201, depth 0.1 m (100 mg/kg and 67 mg/kg);
 - o Bore 201, depth 0.5 m (57 mg/kg);
 - o Bore 201, depth 0.5 m (57 mg/kg);
 - o Bore 202, depth 0.5 m (59 mg/kg);
 - o Bore 203, depth 0.1 m (53 mg/kg)
 - o Bore 206, depth 0.1 m (97 mg/kg);
 - o Pit 207, depth 0.1 m (66 mg/kg);
 - o Pit 208, depth 0.1 m (93 mg/kg); and
 - o Pit 224, depth 0.05 0.1 m (76 mg/kg).

The above samples were collected from shale or fill which appears to have been sourced locally. As discussed above, it is considered that the recorded arsenic concentrations are due to the natural composition of the native soil / bedrock shale and are not indicative of contamination. The concentrations above did not exceed the EIL for aged contaminants which is considered to be more applicable than the EIL for fresh contaminants given that the detected arsenic is not likely to be fresh. Given this, the exceedance of the EIL for fresh contaminants is not to be of significance with respect to the protection of local terrestrial organisms;

Lead

• The lead concentration for the primary analysis of the sample from Bore 201 at depth 0.1 m (370 mg/kg) exceeded the EIL for fresh contaminants (270 mg/kg) but was within the EIL for aged contaminants (1100 mg/kg). As discussed above, the lead concentrations are considered to be a result of the composition of the natural soil/rock and not as a result of contamination. Given this, it is considered that the EIL for aged contaminants is more appropriate than that for fresh contaminants. Therefore, the exceedance of the EIL for fresh contaminants for lead is not considered to be of significance with respect to the protection of local terrestrial organisms;

Zinc

- Zinc concentrations in the following samples exceeded the EIL for fresh contaminants (240 mg/kg) but were below the EIL (680 mg/kg) for aged contaminants:
 - o Bore 202, depth 1.0 m (340 mg/kg);
 - o Bore 206, depth 0.5 m (490 mg/kg); and
 - o Pit 208, depth 0.1 m (290 mg/kg);

The two highest recorded zinc concentrations above were from bedrock samples and, hence, it is considered that the zinc is naturally sourced from the bedrock and not from a contaminating source. Although the sample from Pit 208, depth 0.1 m, was from fill, the fill appears to have been locally sourced and, hence, the zinc is in this sample is considered to also be from the natural soil/bedrock. Given this, the EIL for aged contaminants is considered to be more appropriate than that for fresh contaminants. Therefore, the exceedance of the EIL for fresh contaminants is considered to not be of significance with respect to the protection of local terrestrial organisms.

Asbestos was not detected in any analysed samples.

The above discussion is further summarised in Table 2.

Table 2: Summary of results

Contaminant Range of		Ecological Investigation Level (EIL)		Health Invo	estigation Levels (HIL)			
of Potential Concern (CoPC)	Concern (mg/kg)	Results	EIL Criteria (Fresh / Aged, mg/kg)	Recorded EIL Exceedances	HIL C (mg/kg)	HIL C Exceedances	Comment	Conclusion
Arsenic	12 - 180	50 / 100	Bore 201, depth 0.1 m (100 & 67 mg/kg) Bore 201, depth 0.5 m (57 mg/kg) Bore 201, depth 0.5 m (57 mg/kg) Bore 202, depth 0.5 m (59 mg/kg) Bore 203, depth 0.1 m (53 mg/kg) Bore 206, depth 0.1 m (97 mg/kg) Bore 206, depth 0.5 m (180 mg/kg) Pit 207, depth 0.1 m (66 mg/kg) Pit 208, depth 0.1 m (93 mg/kg) Pit 224, depth 0.05 – 0.1 m (76 mg/kg)	300	Nil	The exceedances of the EIL criteria for arsenic are not considered to be of significance with respect to the protection of local flora and fauna. ⁽¹⁾	It is considered that the recorded concentrations are suitable for the proposed land use comprising a high school. It is considered that the elevated metals are associated with the natural minerology of the area,	
Cadmium	<pql -="" 2<="" td=""><td>-</td><td>Nil</td><td>90</td><td>Nil</td><td>No exceedances of relevant investigation levels.</td><td rowspan="2">including hematite. Some check testing may be warranted during excavation works and an unexpected finds protocol (UFP) should be implemented. Refer to Section 12.2.</td></pql>	-	Nil	90	Nil	No exceedances of relevant investigation levels.	including hematite. Some check testing may be warranted during excavation works and an unexpected finds protocol (UFP) should be implemented. Refer to Section 12.2.	
Chromium	18 – 50	180 / 410 for Cr (III)	Nil	300 for Cr (VI)	Nil	No exceedances of relevant investigation levels.		
Copper	8 - 100	110 / 220	Nil	17, 000	Nil	No exceedances of relevant investigation levels.	It is considered that the site has a low contamination risk and is suitable for the	
Lead	6 - 370	270 / 1,100	Bore 201, depth 0.1 m (370 mg/kg)	600	Nil	The exceedance of the EIL for fresh contaminants for lead is not considered to of significance with respect to the protection of local flora and fauna. ⁽¹⁾	proposed development. No site remediation is recommended.	

Page 17 of 21

Manganese73 - 6,000No exceedances of relevant investigation levels.Mercury <pql -="" 0.2<="" td="">No80NilNo exceedances of relevant investigation levels.Nickel10 - 6980 / 240Nil1200NilNo exceedances of relevant investigation levels.Nickel10 - 6980 / 240Nil1200NilNo exceedances of relevant investigation levels.Zinc35 - 490240 / 680Bore 202, depth 10 m (340 mg/kg) Bore 206, depth 0.5 m (490 mg/kg) Pit 208, depth 0.1 m (290 mg/kg)30,000NilThe exceedances of contamination for considered to be of significance with respect to the protection of local flora and fauna.¹⁰PAHAll <pql< td="">0.1Nil0.1No detection of the CoPC.TotalAll <pql< td="">0.1Nili0.1NoilNo detection of the CoPC.OCPC, OPRAll <pql< td="">0.1Nili0.1No detection of the CoPC.OCPC, OPRAll <pql< td="">0.1Nili0.1No detection of the CoPC.AsbestosNa obsetod vorkeAll <pql< td="">Nili0.1No detection of the CoPC.AsbestosNo sobsetod vorkeNo detection of NiliNo detection of the CoPC.No detection of the CoPC.</pql<></pql<></pql<></pql<></pql<></pql>		RINERS	I				
Mercury <pql -="" 0.2<="" th="">Nil80Nilrelevant investigation levels.Nickel10 - 6980 / 240Nil1200NilNo exceedances of relevant investigation levels.Nickel10 - 6980 / 240Bore 202, depth 10 m (340 mg/kg) Bore 206, depth 0.5 m (490 mg/kg) Pit 208, depth 0.1 m (290 mg/kg)30, 000NilThe exceedances of the EIL for fresh contamination for zinc are not considered to be of significance with respect to the potection of local flor and fauna.^[1]PAHAll <pql< td="">0.NilNo detection of the COPC.TRHAll <pql< td="">0.NilNo detection of the COPC.BTEXAll <pql< td="">0.NilNo detection of the COPC.OCP, OPP, PCEAll <pql< td="">0.NilNo detection of the COPC.OCP, OPP, PCEAll <pql< td="">0.NilNo detection of the COPC.AsbestosNo asbestos observed during field workNilSolNilNo detection of the COPC.AsbestosNo asbestos detected by laboratory analysisSolNilSolNo detection of the COPC.AsbestosNo asbestos detected by laboratory analysisNilSolNo detection of the COPC.AsbestosNo asbestos detected by laboratory analysisSolNilNo detection of the COPC.AsbestosNo asbestos detected by laboratory analysisSolNilNo detection of the COPC.</pql<></pql<></pql<></pql<></pql<></pql>	Manganese	73 – 6,000	-	Nil	19, 000	Nil	relevant investigation
Nickel10 - 6980 / 240Nil1200Nilrelevant investigation levels.ZincS5 - 490240 / 680Bore 202, depth 1.0 m (340 mg/kg) Bore 206, depth 0.5 m (490 mg/kg) Pit 208, depth 0.1 m (290 mg/kg)30,000NilThe exceedances of the EIL for fresh considered to be of significance with respect to the protection of local flora and fauna. ¹⁰ PAHAll <pql< td="">0.1S0 Nil0.1No detection of the COPC.TRHAll <pql< td="">0.1Nili0.1No detection of the COPC.Total PhenolicsAll <pql< td="">0.1Nili0.1No detection of the COPC.OCP, OPP, PCBAll <pql< td="">0.1Nili0.1No detection of the COPC.AsbestosNo asbestos detected by analysis or observed duving field workAll <pql< td="">Nili0.1No detection of the COPC.AsbestosNo asbestos detected by analysis or observed duving field workSolAll <pql< td="">NiliNo detection of the COPC.</pql<></pql<></pql<></pql<></pql<></pql<>	Mercury	<pql -="" 0.2<="" td=""><td>-</td><td>Nil</td><td>80</td><td>Nil</td><td>relevant investigation</td></pql>	-	Nil	80	Nil	relevant investigation
Zinc35 - 490240 / 680Bore 202, depth 10 m (340 mg/kg) Bore 206, depth 0.5 m (490 mg/kg) Pit 208, depth 0.1 m (290 mg/kg)30,000Nilithe ELL for fresh considered to be of significance with respect to the protection of local flor and fauna. ^{(IIII})PAHAll < PQL	Nickel	10 - 69	80/240	Nil	1200	Nil	relevant investigation
PAHAll < PQL-NII-NIICOPC.TRHAll < PQL	Zinc	35 - 490	240 / 680	Bore 206, depth 0.5 m (490 mg/kg)	30, 000	Nil	the EIL for fresh contamination for zinc are not considered to be of significance with respect to the protection of local
IRHAll < PQL-NIICOPC.BTEXAll < PQL	РАН	All <pql< td=""><td>-</td><td>Nil</td><td>-</td><td>Nil</td><td></td></pql<>	-	Nil	-	Nil	
BTEXAll < PQL-NII-NIICOPC.Total PhenolicsAll < PQL	TRH	All <pql< td=""><td>-</td><td>Nil</td><td>-</td><td>Nil</td><td></td></pql<>	-	Nil	-	Nil	
PhenolicsAll < PQL-NilCoPC.OCP, OPP, PCBAll < PQL	BTEX	All <pql< td=""><td>-</td><td>Nil</td><td>-</td><td>Nil</td><td></td></pql<>	-	Nil	-	Nil	
PCBAll < PQL-NICoPC.Asbestos detected by laboratory analysis or observed during field work-Ni-NiCoPC.		All <pql< td=""><td>-</td><td>Nil</td><td>-</td><td>Nil</td><td></td></pql<>	-	Nil	-	Nil	
Asbestos detected by laboratory analysis or observed during field work - Nil - Nil No detection of the CoPC.		All <pql< td=""><td>-</td><td>Nil</td><td>-</td><td>Nil</td><td></td></pql<>	-	Nil	-	Nil	
	Asbestos	detected by laboratory analysis or observed during field	-	Nil	-	Nil	

Notes:

PQL = Practical Quantification Limit i.e., minimum concentration that can be reported by the laboratory under their NATA Accreditation.

"-" indicates the investigation levels are not relevant and / or not available for this contaminant.

(1) Given the origin of the elevated arsenic, lead and zinc is considered to be the local natural bedrock (see Section 6.2), the elevated metals are considered to be of local natural origin and not as a result of a contaminating source. Therefore the recorded exceedances of the EIL criteria are not considered to be of significance with respect to the protection of local flora and fauna.

11.2 **Preliminary waste classification comments**

11.2.1 **Fill**

For the purpose of providing preliminary waste classification comments, Table I3, Appendix I, provides a comparison of analytical results for the site with criteria sourced from NSW EPA, *Waste Classification Guidelines, Part 1: Classifying waste*, 2014 (NSW EPA, 2014). Contaminant concentrations for the analysed fill samples were within CTI thresholds for general solid waste with the exception of:

- Lead concentrations in the following samples which exceeded the CTI threshold of 100 mg/kg:
 - o Bore 201, depth 0.1 m (370 mg/kg and 150 mg/kg);
 - o Bore 202, depth 0.1 m (120 mg/kg);
 - o Bore 203, depth 1.0 m (130 mg/kg);
 - o Bore 204, depth 0.1 m (140 mg/kg);
 - o Pit 208, depth 0.1 m (160 mg/kg);
 - o Pit 224, depth 0.05 0.1 m (210 mg/kg);
- The nickel concentration in the sample from Bore 203, depth 1.0 m (69 mg/kg) which exceeded the CTI threshold of 40 mg/kg.

Asbestos was not detected in any analysed samples.

Results indicate that the fill at the site would likely be classifiable as general solid waste depending on toxicity characteristics leaching procedure (TCLP) testing and appropriate statistical analysis. A standalone waste classification would be required for any specific material requiring off-site disposal. The standalone waste classification(s) would incorporate existing data and may require further analysis on the specific material being disposed.

11.3 Natural soil and rock

For natural soil/rock samples collected from the site, concentrations of TRH, BTEX and PAH were less than laboratory practical quantitation limits and concentrations of metals were within what are considered to be local background levels. These results indicate that the natural soil / bedrock may be classifiable as Virgin Excavated Natural Material (VENM) as per the definition in the *Protection of the Environment Operations Act 1997* (POEO Act). Further sampling and analysis would need to be undertaken in order to provide a VENM classification for soil or rock that is designated to be disposed off-site.

It is noted that material classified as VENM from the site may not be accepted at some potential receival sites due to the relatively high naturally occurring concentrations of metals in the material (i.e. the metals concentrations may exceed the criteria adopted at the potential receival sites).

11.4 Data quality assurance and quality control

The data quality assurance and quality control (QA/QC) results for the investigation are included in Appendix K. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

12. Conclusions and recommendations

12.1 Site suitability

Somewhat elevated concentrations of metals (arsenic, lead and zinc) were recorded with respect to EIL, however, the recorded metals concentrations are considered to be as a result of the local natural soil / bedrock and not indicative of contamination. The recorded concentrations of metals above the EIL are considered to not to be of significance with respect to the protection of local terrestrial organisms (i.e. flora and fauna). As such, it is considered that the site has a low risk to identified ecological receptors (flora and fauna) and is suitable for the proposed development.

Recorded concentrations of contaminants for the site were within health-based criteria.

Based on the results of the investigation, whilst incorporating information presented in the SAR, it is considered that the site is suitable for the proposed development of a new high school from a contaminated land perspective.

12.2 **Recommendations and mitigation measures**

Results presented in this investigation, when considering the information presented in the SAR, indicate that site remediation is not required. It is noted, however, that high concentrations of naturally-occurring metals (at concentrations above health-based assessment criteria) may be associated with bedrock (at untested locations / depths). Therefore, it may be appropriate (for an environmental consultant) to conduct check sampling and analysis for metals on excavated bedrock that is proposed to be reused at the site as fill, to confirm (or otherwise) the suitability of the material.

Given the presence of widespread fill at the site, albeit assessed to be at a low contamination risk, it is recommended that an unexpected finds protocol (UFP) be developed and implemented during future civil and construction works such that any unexpected finds of contamination (or potential contamination) is appropriately assessed and managed.

13. References

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene*. Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

GSNSW. (2019). NSW Seamless Geology. Geological Survey NSW Web Map Service.

Harwood Environmental Consultants (HEC). (2023). *Site Audit Report for SAS 439, Googong Neighbourhood 2 – School site – LOT 829 DP1277372*, dated 18 July 2023.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW DECC. (2008). *NSW Acid Sulfate Soil Risk Mapping digital dataset*. NSW Department of Environment and Climate Change.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land*. Contaminated Land Guidelines: NSW Environment Protection Authority.

NSW EPA. (2022). *Sampling Design, Part 1: Application; Part 2: Interpretation*. NSW Environment Protection Authority.

Office of Environment and Heritage. (2019). Soil Landscapes of Central and Eastern NSW - v2. Sydney: NSW Office of Environment and Heritage.

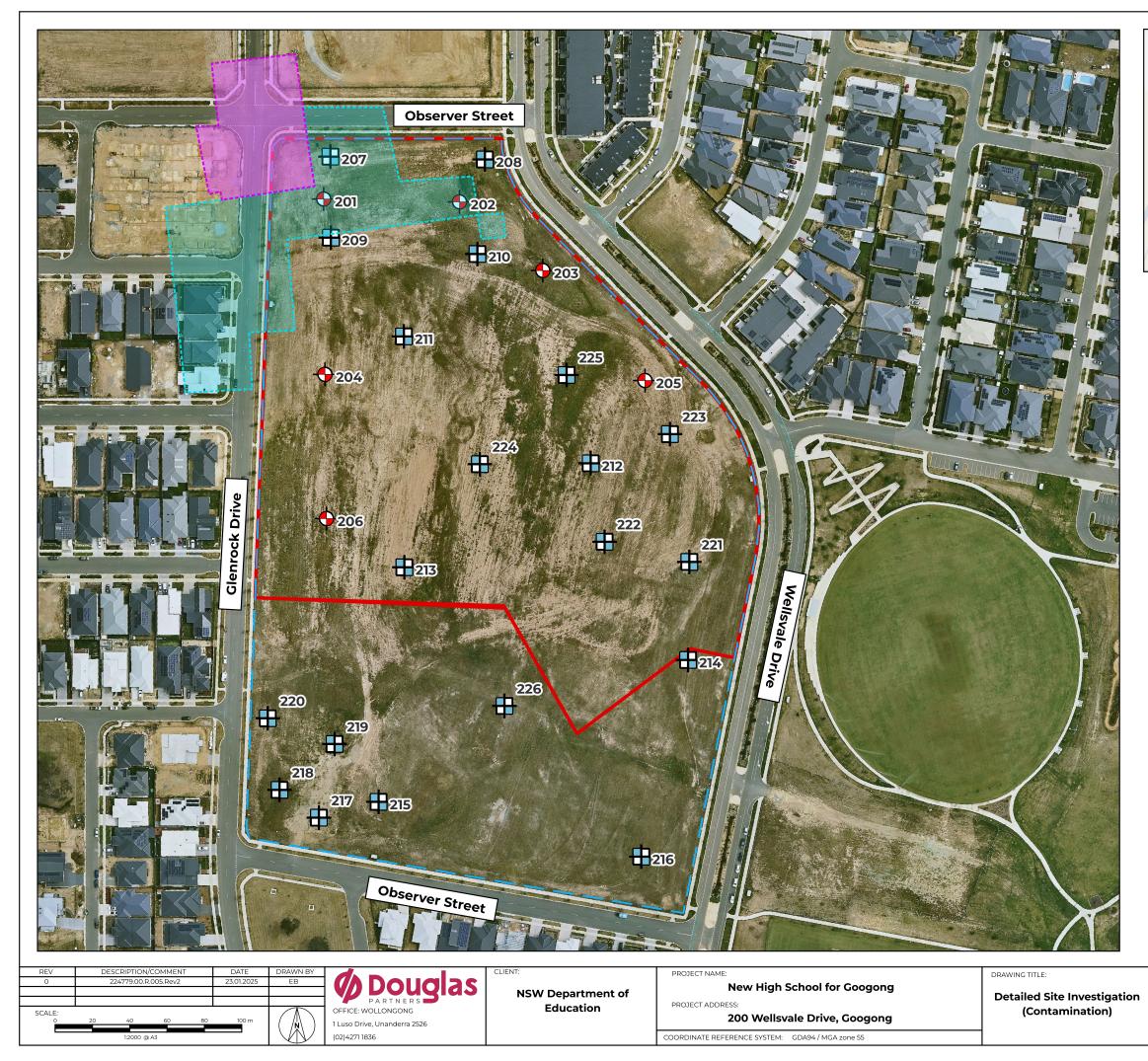
14. Limitations

Douglas Partners Pty Ltd (Douglas) has prepared this report (or services) for this project at 200 Wellsvale Drive, Googong. This report is provided for the exclusive use of NSW Department of Education for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of Douglas, does so entirely at its own risk and without recourse to Douglas for any loss or damage. In preparing this report Douglas has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after Douglas' field testing has been completed.

Douglas' advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by Douglas in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.




This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. Douglas cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by Douglas. This is because this report has been written as advice and opinion rather than instructions for construction.

Appendix A

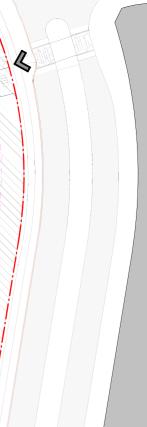
Drawings

LOCALITY PLAN

Legend

 \bullet

- Site Boundary
- Lot Boundary
 - Borehole Location
- Test Pit Location
- Previous Remediation Areas (HEC, 2023)
- Area 2 Excavation and off-site disposal to landfillArea 3 Excavation and re-use in surrounding residential and
 - commercial land


1:	NOTE: 1: Basemap from MetroMap.com (Dated 24.11.2024)	PROJECT NO: 224779.00	
	2+11.202+)	DRAWING NO: R.005.D.001	
		REVISION: 2	

LEGEND	
≪	MAIN ACCESS
«	SECONDARY ACCESS
<	SELU ACCESS
≪	VEHICLE ACCESS
$\langle\!\!\langle$	STUDENT ACCESS
<	PRIMARY SCHOOL ACCESS
<u> </u>	FENCE LINE
	BOUNDARY
	6m SETBACK
	SCHOOL BOUNDARY
	TOP OF EXISTING KERB
	PICK UP AND DROP OFF
	ACCESSIBLE PARKING
	BUS ZONE
B	BUS STOP
So	BICYCLE PARKING
P	CAR PARK
	WASTE AREA
	PUMP ROOM 5mx3mx2.3m
-	BOOSTER VALVE 2.5mx1mx1.6m
OSD TANK	OSD TANK

DRAFT REF

Issue No. Date 29.11.2024

Description ISSUE FOR DRAFT RE

Chkd RS

Changes to this Revision

+61 2 9922 2344 nbrs.com.au Nominated Architects: Andrew Duffin NSW 5602 Jonathan West NSW 9899 NBRS & Partners Pty Ltd VIC 51197 ABN 16 002 247 565 Project

24136 - Googong High school

200 Wellsvale Drive, Googong NSW 2620

Date 29/11/2024 1:34:54 PM Scale 1:500@A1 NBRS Project # 24136 Drawing Reference GGHS-NBRS-ZZ-ZZ-DR-A-000201 1

 Io
 1o
 2o
 3o
 4a
 5o
 6o
 1ro
 1so
 1o0

 Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the copyright.
 © 2024

Appendix B

About this Report

Introduction

These notes have been provided to amplify Douglas' report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

Douglas' reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Engagement Terms for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather

changes. They may not be the same at the time of construction as are indicated in the report; and

• The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, Douglas will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, Douglas cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, Douglas will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, Douglas requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. Douglas would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

Appendix C

Site Audit Statement

NSW Site Auditor Scheme

Site Audit Statement

A site audit statement summarises the findings of a site audit. For full details of the site auditor's findings, evaluations and conclusions, refer to the associated site audit report.

This form was approved under the *Contaminated Land Management Act* 1997 on 12 October 2017.

For information about completing this form, go to Part IV.

Part I: Site audit identification

Site audit statement no. 439

This site audit is a:

Statutory audit

non-statutory audit

within the meaning of the Contaminated Land Management Act 1997.

Site auditor details

(As accredited under the Contaminated Land Management Act 1997)

Name	Rod Harwood	
Company	Harwood Environmental Consultants	
Address	Suite F, Building 38, Suakin Drive,	
	Mosman, NSW	Postcode 2088
Phone	0438 200 055	
Email	rod@harwoodenviro.com.au	

Site details

Address	Wellsvale Drive, Googong NSW		
Postcode		2620	

Property description

(Attach a separate list if several properties are included in the site audit.)

Lot 829 DP1277372

Local government area **Queanbeyan-Palerang Regional Council**

Area of site (include units, e.g. hectares) Total Audit area: 71.112ha

School Site: 90,010 m²

 Current zoning
 R1 – Local Centre under Queanbeyan City Council LEP 2012

 Amendment No 10

Regulation and notification

To the best of my knowledge:

- the site is the subject of a declaration, order, agreement, proposal or notice under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985, as follows: (provide the no. if applicable)
 - Declaration no.
 - -Order no.
 - -Proposal no.
 - Hotice no.
- the site is not the subject of a declaration, order, proposal or notice under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.

To the best of my knowledge:

- the site has been notified to the EPA under section 60 of the Contaminated Land Management Act 1997
- the site **has not** been notified to the EPA under section 60 of the *Contaminated Land Management Act 1997*.

Site audit commissioned by

Name Mitchell Alexander

Company Googong Township Pty Limited

Address L3, 64 Allara Street, Canberra ACT

Postcode 2600

Phone 0413 432 440

Email Mitchell.alexander@peet.com.au

Site Audit Statement

Cor	Contact details for contact person (if different from above)		
Nan	n e -		
Pho	ne		
Ema	ail		
Nat	ure of statutory requirements (not applicable for non-statutory audits)		
-	Requirements under the <i>Contaminated Land Management Act</i> 1997 (e.g. management order; please specify, including date of issue)		
	Requirements imposed by an environmental planning instrument (please specify, including date of issue)		
	Development consent requirements under the <i>Environmental Planning and</i> <i>Assessment Act 1979</i> (please specify consent authority and date of issue) The SAS and SAR are required as a condition of consent for Queanbeyan Palerang Regional Council Development Application 123-2017 (approved 10 Jan		
	2018): PRIOR TO ISSUE OF SUBDIVISION CERTIFICATE (TORRENS)		
	38. SITE AUDIT STATEMENT		
	Prior to the issue of a Subdivision Certificate for each stage of works covered by this application a Site Audit Statement (SAS) and Site Audit Report (SAR) must be prepared by an accredited site auditor and be submitted to Council for that stage. The SAS must state that the site has been remediated and validated to permit the use of the site for its designated landuse.		
	Any recommendations or conditions contained within the SAS must be implemented and evidence of their implementation must be submitted to Council prior to the issue of a Subdivision Certificate. Any ongoing management conditions will become enforceable under this consent.		
	If the applicant intends to release the subdivision in stages the Site Auditor may issue an SAS for each stage of the development prior to the release of the subdivision certificate for that stage.		
	Requirements under other legislation (please specify, including date of issue)		

Purpose of site audit

A1 To determine land use suitability:

Intended uses of the land: The Audit site is proposed as part of the Googong township residential development. The Audit area has been reserved for a future primary and high school, understood to include classrooms and supporting administration buildings, playgrounds and school ovals, and carparks and access roads.

OR

A2 To determine land use suitability subject to compliance with either an active or passive environmental management plan

Intended uses of the land:

OR

(Tick all that apply)

B1 To determine the nature and extent of contamination

B2 To determine the appropriateness of:

an investigation plan

a remediation plan

a management plan

 B3 To determine the appropriateness of a site testing plan to determine if groundwater is safe and suitable for its intended use as required by the Temporary Water Restrictions Order for the Botany Sands Groundwater Resource 2017

B4 To determine the compliance with an approved:

□ voluntary management proposal or

- management order under the Contaminated Land Management Act 1997
- **B5** To determine if the land can be made suitable for a particular use (or uses) if the site is remediated or managed in accordance with a specified plan.

Intended uses of the land:

Information sources for site audit

Consultancies which conducted the site investigations and/or remediation:

Coffey Geosciences Pty Ltd, C.M. Jewell & Associates Pty Ltd, Geotechnique Pty Ltd, SMEC Pty Ltd, Terravale Consulting Pty Ltd, ADE Consulting Group Pty Ltd

Titles of reports reviewed:

- Coffey Geosciences Pty Ltd (July 2004) 'Googong Local Environment Study, Phase 1 Environmental Site Assessment' Ref C7552/1-AC
- C.M Jewell & Associates Pty Ltd (CMJA), 'Sampling, Analytical and Quality Plan for the Remediation of Googong Township Residential Development, Googong Dam Road, Googong'. Report Ref. J1526.2R-rev0, dated April 2012
- Geotechnique Pty Ltd, 'Contamination Assessment, Neighbourhood 1A Stage 7 & Neighbourhood 2, Googong Road, Googong'. Report Ref. 126875/4-AA, dated May 2016
- SMEC (2016) May 2016 Monitoring Report (ref 30011525-AQ) date June 2016
- Geotechnique Pty Ltd, 'Detailed Contamination Assessment, Neighbourhood 1A Stage 7 & Neighbourhood 2, Googong Road, Googong'. Report Ref. 12675/4-AB, dated 16 May 2017
- Geotechnique Pty Ltd, 'Remedial Action Plan, Neighbourhood 2, Googong Road, Googong'. Report Ref. 12675/4-AC), dated 27 April 2018
- Terravale Consulting Pty Ltd (2021) 'Health Risk Assessment: Naturally Occurring Metals in Soil, Googong Residential Development, Googong Township, NSW' (reference 20019_01b) dated 8 February 2021
- Geotechnique Pty Ltd (2021) 'Site Remediation and Validation, Neighbourhood (NH) 2, Old Cooma Road, Googong' (Report No: 12675/6-AA) dated June 2021
- Geotechnique Pty Ltd (2022) 'Site Remediation and Validation Addendum (2nd Version), Stages 12 – 14, 16C & 16D of Neighbourhood (NH) 2 – Old Cooma Road, Googong' dated 21 March 2022.
- Geotechnique Pty Ltd (2022) 'Laboratory test results for additional validation samples in stockpile footprint Googong NH2 School Site' email dated 13 September 2022.
- ADE Consulting Group Pty Ltd (2018) 'Waste Analysis and Classification Report' (reference HIQ-12-14658).
- Geotechnique Pty Ltd (2021) 'Remediation and Validation, School Site of Neighbourhood (NH) 2, Glenrock Drive, Googong' (Report No: 12675/12-AA) dated June 2023

Other information reviewed, including previous site audit reports and statements relating to the site:

NA

Site audit report details

Title: Site Audit Report for SAS 439, Googong Neighbourhood 2– School Site – Lot 829 DP1277372

Report no.: 23023_SAR_v00

Date: 18/07/2023

Part II: Auditor's findings

Please complete either Section A1, Section A2 or Section B, not more than one section. (Strike out the irrelevant sections.)

- Use **Section A1** where site investigation and/or remediation has been completed and a conclusion can be drawn on the suitability of land uses **without the implementation** of an environmental management plan.
- Use **Section A2** where site investigation and/or remediation has been completed and a conclusion can be drawn on the suitability of land uses **with the implementation** of an active or passive environmental management plan.
- Use **Section B** where the audit is to determine:
 - o (B1) the nature and extent of contamination, and/or
 - (B2) the appropriateness of an investigation, remediation or management plan¹, and/or
 - (B3) the appropriateness of a site testing plan in accordance with the *Temporary Water Restrictions Order for the Botany Sands Groundwater Source 2017*, and/or
 - (B4) whether the terms of the approved voluntary management proposal or management order have been complied with, and/or
 - (B5) whether the site can be made suitable for a specified land use (or uses) if the site is remediated or managed in accordance with the implementation of a specified plan.

¹ For simplicity, this statement uses the term 'plan' to refer to both plans and reports.

Section A1

I certify that, in my opinion:

The site is suitable for the following uses:

(Tick all appropriate uses and strike out those not applicable.)

- Residential, including substantial vegetable garden and poultry
- Residential, including substantial vegetable garden, excluding poultry
- Residential with accessible soil, including garden (minimal home-grown produce contributing less than 10% fruit and vegetable intake), excluding poultry
- Day care centre, preschool, primary school
- Residential with minimal opportunity for soil access, including units
- Secondary school
- Park, recreational open space, playing field
- Commercial/industrial
- Other (please specify):

OR

I certify that, in my opinion, the **site is not suitable** for any use due to the risk of harm from contamination.

Overall comments:

The Auditor considers that the site investigation, remediation and validation was undertaken appropriately and has confirmed that the site has been rendered suitable for the proposed land uses (comprising of a primary and secondary school) and that no further investigation or remediation of the area under the Audit is required.

Section A2

Certify that, in my opinion:

Subject to compliance with the <u>attached</u> environmental management plan² (EMP), the site is suitable for the following uses:

(Tick all appropriate uses and strike out those not applicable.)

- Residential, including substantial vegetable garden and poultry
- Residential, including substantial vegetable garden, excluding poultry
- □ Residential with accessible soil, including garden (minimal home-grown produce contributing less than 10% fruit and vegetable intake), excluding poultry
- Day care centre, preschool, primary school
- Residential with minimal opportunity for soil access, including units
- □ Secondary school
- Park, recreational open space, playing field
- Commercial/industrial
- Other (please specify):

EMP details

Title:	
Author:	
Date:	No of pages:

EMP summary

This EMP (attached) is required to be implemented to address residual contamination on the site.

The EMP: (Tick appropriate box and strike out the other option.)

- requires operation and/or maintenance of **active** control systems³
- requires maintenance of **passive** control systems only³.

² Refer to Part IV for an explanation of an environmental management plan.

³ Refer to Part IV for definitions of active and passive control systems.

Purpose of the EMP:

Description of the nature of the residual contamination:

Summary of the actions required by the EMP:

How the EMP can reasonably be made to be legally enforceable:

How there will be appropriate public notification:

Overall comments:

Section B

Purpose of the plan⁴ which is the subject of this audit:

I certify that, in my opinion:

(B1)

- The nature and extent of the contamination **has** been appropriately determined
- The nature and extent of the contamination **has not** been appropriately determined

AND/OR (B2)

□ The investigation, remediation or management plan **is** appropriate for the purpose stated above

□ The investigation, remediation or management plan **is not** appropriate for the purpose stated above

AND/OR (B3)

- The site testing plan:
 - **is** appropriate to determine
 - **is not** appropriate to determine

if groundwater is safe and suitable for its intended use as required by the *Temporary Water Restrictions Order for the Botany Sands Groundwater Resource 2017*

AND/OR (B4)

- □ The terms of the approved voluntary management proposal* or management order** (strike out as appropriate):
 - **have** been complied with
 - **have not** been complied with.

*voluntary management proposal no.

**management order no.

AND/OR (B5)

The site **can be made suitable** for the following uses:

(Tick all appropriate uses and strike out those not applicable.)

- □ Residential, including substantial vegetable garden and poultry
- □ Residential, including substantial vegetable garden, excluding poultry

⁴ For simplicity, this statement uses the term 'plan' to refer to both plans and reports.

□ Residential with accessible soil, including garden (minimal home-grown produce contributing less than 10% fruit and vegetable intake), excluding poultry

- Day care centre, preschool, primary school
- □ Residential with minimal opportunity for soil access, including units
- Secondary school
- \Box \setminus Park, recreational open space, playing field
- Commercial/industrial

□ Other (please specify):

IF the site is remediated/managed* in accordance with the following plan (attached):

*Strike out as appropriate

Plan title

Plan author

Plan date

No. of pages

SUBJECT to compliance with the following condition(s):

Overall comments:

Part III: Auditor's declaration

I am accredited as a site auditor by the NSW Environment Protection Authority (EPA) under the *Contaminated Land Management Act 1997.*

Accreditation no. 03-04

I certify that:

- I have completed the site audit free of any conflicts of interest as defined in the *Contaminated Land Management Act 1997,* and
- with due regard to relevant laws and guidelines, I have examined and am familiar with the reports and information referred to in Part I of this site audit, and
- on the basis of inquiries I have made of those individuals immediately responsible for making those reports and obtaining the information referred to in this statement, those reports and that information are, to the best of my knowledge, true, accurate and complete, and
- this statement is, to the best of my knowledge, true, accurate and complete.

I am aware that there are penalties under the *Contaminated Land Management Act* 1997 for wilfully making false or misleading statements.

Signed	Renwood	
Date	18/07/2023	

Part IV: Explanatory notes

To be complete, a site audit statement form must be issued with all four parts.

How to complete this form

Part I

Part I identifies the auditor, the site, the purpose of the audit and the information used by the auditor in making the site audit findings.

Part II

Part II contains the auditor's opinion of the suitability of the site for specified uses or of the appropriateness of an investigation, or remediation plan or management plan which may enable a particular use. It sets out succinct and definitive information to assist decision-making about the use or uses of the site or a plan or proposal to manage or remediate the site.

The auditor is to complete either Section A1 or Section A2 or Section B of Part II, **not** more than one section.

Section A1

In Section A1 the auditor may conclude that the land is *suitable* for a specified use or uses OR *not suitable* for any beneficial use due to the risk of harm from contamination.

By certifying that the site is *suitable*, an auditor declares that, at the time of completion of the site audit, no further investigation or remediation or management of the site was needed to render the site fit for the specified use(s). **Conditions must not be** imposed on a Section A1 site audit statement. Auditors may include **comments** which are key observations in light of the audit which are not directly related to the suitability of the site for the use(s). These observations may cover aspects relating to the broader environmental context to aid decision-making in relation to the site.

Section A2

In Section A2 the auditor may conclude that the land is *suitable* for a specified use(s) subject to a condition for implementation of an environmental management plan (EMP).

Environmental management plan

Within the context of contaminated sites management, an EMP (sometimes also called a 'site management plan') means a plan which addresses the integration of environmental mitigation and monitoring measures for soil, groundwater and/or hazardous ground gases throughout an existing or proposed land use. An EMP succinctly describes the nature and location of contamination remaining on site and states what the objectives of the plan are, how contaminants will be managed, who will be responsible for the plan's implementation and over what time frame actions specified in the plan will take place.

By certifying that the site is suitable subject to implementation of an EMP, an auditor declares that, at the time of completion of the site audit, there was sufficient information satisfying guidelines made or approved under the *Contaminated Land Management Act* 1997

(CLM Act) to determine that implementation of the EMP was feasible and would enable the specified use(s) of the site and no further investigation or remediation of the site was needed to render the site fit for the specified use(s).

Implementation of an EMP is required to ensure the site remains suitable for the specified use(s). The plan should be legally enforceable: for example, a requirement of a notice under the CLM Act or a development consent condition issued by a planning authority. There should also be appropriate public notification of the plan, e.g. on a certificate issued under s.149 of *the Environmental Planning and Assessment Act 1979*.

Active or passive control systems

Auditors must specify whether the EMP requires operation and/or maintenance of active control systems or requires maintenance of passive control systems only. Active management systems usually incorporate mechanical components and/or require monitoring and, because of this, regular maintenance and inspection are necessary. Most active management systems are applied at sites where if the systems are not implemented an unacceptable risk may occur. Passive management systems usually require minimal management and maintenance and do not usually incorporate mechanical components.

Auditor's comments

Auditors may also include **comments** which are key observations in light of the audit which are not directly related to the suitability of the site for the use(s). These observations may cover aspects relating to the broader environmental context to aid decision-making in relation to the site.

Section B

In Section B the auditor draws conclusions on the nature and extent of contamination, and/or suitability of plans relating to the investigation, remediation or management of the land, and/or the appropriateness of a site testing plan in accordance with the *Temporary Water Restrictions Order for the Botany Sands Groundwater Source 2017*, and/or whether the terms of an approved voluntary management proposal or management order made under the CLM Act have been complied with, and/or whether the site can be made suitable for a specified land use or uses if the site is remediated or managed in accordance with the implementation of a specified plan.

By certifying that a site *can be made suitable* for a use or uses if remediated or managed in accordance with a specified plan, the auditor declares that, at the time the audit was completed, there was sufficient information satisfying guidelines made or approved under the CLM Act to determine that implementation of the plan was feasible and would enable the specified use(s) of the site in the future.

For a site that *can be made suitable*, any **conditions** specified by the auditor in Section B should be limited to minor modifications or additions to the specified plan. However, if the auditor considers that further audits of the site (e.g. to validate remediation) are required, the auditor must note this as a condition in the site audit statement. The condition must not specify an individual auditor, only that further audits are required.

Auditors may also include **comments** which are observations in light of the audit which provide a more complete understanding of the environmental context to aid decision-making in relation to the site.

Part III

In **Part III** the auditor certifies their standing as an accredited auditor under the CLM Act and makes other relevant declarations.

Where to send completed forms

In addition to furnishing a copy of the audit statement to the person(s) who commissioned the site audit, statutory site audit statements must be sent to

- the NSW Environment Protection Authority: <u>nswauditors@epa.nsw.gov.au</u> or as specified by the EPA AND
- the **local council** for the land which is the subject of the audit.

Appendix D

Data Quality Objectives

1. Data quality objectives

Douglas (2024) was devised broadly in accordance with the seven-step data quality objectives (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013).

Table 1: Data quality objectives

Step	Summary
1: State the problem	The objective of the investigation is to assess the suitability of the site, from a contamination perspective, with respect to the proposed land use. The report is being undertaken as development of a new high school is proposed at the site.
	A preliminary conceptual site model (CSM) has been prepared (Section 7) for the site.
	The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, field staff.
2: Identify the decisions / goal of the study	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 7). The CSM identifies the associated contaminants of potential concern (CoPC) and the likely impacted media. The site assessment criteria (SAC) for each of the CoPC are detailed in Appendix F.
	The decision is to establish whether or not the results fall below the adopted SAC or whether or not the 95% upper confidence limit of the sample population falls below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective will be derived and a decision made on whether (or not) further assessment and / or remediation will be required.
3: Identify the information	Inputs to the investigation were the results of analysis of samples to measure the concentrations of CoPC identified in the CSM (Section 7) at the site using National Association of Testing Authorities (NATA) accredited laboratories and methods, where possible. The SAC for each of the CoPC are detailed in Appendix F.
inputs	A photoionisation detector (PID) was used on-site to screen soils for VOC. PID readings will be used to inform sample selection for laboratory analysis.
4: Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing R.005.D.001, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken. Constraints to the assessment are identified and discussed in the conclusions of the report, Section 12.

Step	Summary
	The decision rule is to compare all analytical results with the adopted SAC (Appendix F), based on NEPC (2013). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.
5: Develop the	Where a sample result exceeds the adopted criterion, a further site- specific assessment will be made as to the risk posed by the presence of that contaminant(s).
analytical approach (or decision rule)	Initial comparisons will be with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL)) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix K.
	Baseline condition: Contaminants at the site and/or statistical analysis of data (in line with NEPC (2013)) exceed human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis).
	Alternative condition: Contaminants at the site and statistical analysis of data (in line with NEPC (2013)) comply with human health and environmental SAC and as such, do not pose a potentially unacceptable risk to receptors (alternative hypothesis).
6: Specify the performance or acceptance	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.
criteria	Uncertainty that may exist due to the above potential decision errors shall be mitigated as follows:
	As well as a primary screening exercise, the use of the 95% UCL as per NEPC (2013) may be applied, i.e.: 95% is the defined confidence level associated with the UCL on the geometric mean for contaminant data. The resultant 95% UCL shall subsequently be screened against the corresponding SAC.
	The statistical assessment will only be able to be applied to certain data- sets, such as those obtained via systematic sampling.
7: Optimise the design for obtaining data	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.
	Further details regarding the proposed sampling plan are presented in Section 8.2.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix E

Field Work Methodology

1. Guidelines

The following key guidelines were consulted for the field work methodology:

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

2. Soil sampling

Soil sampling was carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprised:

- Boreholes 201 to 206 were drilled using a Scout 6 truck-mounted drill rig with 125 mm auger.
- Test Pits 207 to 226 were excavated using hand tools;
- Soil samples were collected directly from the hand tools or from the solid flight auger at the nominated sample depth;
- Samples were transferred into laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Replicate samples were collected in zip-lock bags for PID screening;
- New disposable nitrile gloves for each sample point were used thereby minimising potential for cross-contamination;
- Labelling of sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Placing samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

The procedure for the PID field testing is as follows:

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen using the PID.

3. References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix F

Site Assessment Criteria

1. Introduction

1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).

1.2 General

The SAC applied are informed by the conceptual site model (CSM) which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Secondary school land use which corresponds to land use category 'C' (public open space such as parks, playgrounds, playing fields, secondary schools and footpaths).
- Soil type: silt and clay.

2. Soils

2.1 Health investigation and screening levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 to 3. Note that HSL for vapour intrusion for land use category 'A' have been adopted instead of those for category C given the proposed secondary school buildings (as recommended in NEPC, 2013). HSL for category A are more conservative than those for category C. Similarly, the more conservative HSL for direct contact (land use category A) have also been adopted.

Contaminant	HIL-C	
Metals		
Arsenic	300	
Cadmium	90	
Chromium (VI)	300	
Copper	17 000	

Table 1: Health investigation levels (mg/kg)

Contaminant	HIL-C	
Lead	600	
Manganese	19 000	
Mercury (inorganic)	80	
Nickel	1200	
Zinc	30 000	
РАН		
B(a)P TEQ	3	
Total PAH	300	
Phenols		
Phenol	40 000	
Pentachlorophenol	120	
ОСР		
DDT+DDE+DDD	400	
Aldrin and dieldrin	10	
Chlordane	70	
Endosulfan	340	
Endrin	20	
Heptachlor	10	
НСВ	10	
Methoxychlor	400	
ОРР		
Chlorpyrifos	250	
РСВ		
РСВ	1	

Table 2: Health screening levels for vapour intrusion (mg/kg)

Contaminant	HSL-A&B
SAND	0 m to <1 m
Benzene	0.5
Toluene	160
Ethylbenzene	55
Xylenes	40
Naphthalene	3

Contaminant	HSL-A&B
TRH FI	45
TRH F2	110
SILT	0 m to <1 m
Benzene	0.6
Toluene	390
Ethylbenzene	NL
Xylenes	95
Naphthalene	4
TRH FI	40
TRH F2	230
CLAY	0 m to <1 m
Benzene	0.7
Toluene	480
Ethylbenzene	NL
Xylenes	110
Naphthalene	5
TRH FI	50
TRH F2	280

Notes: TRH F1 is TRH C6-C10 minus BTEX

TRH F2 is TRH >C10-C16 minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

Table 3: Health screening levels for direct contact (mg/kg)

Contaminant	DC HSL-A
Benzene	100
Toluene	14 000
Ethylbenzene	4500
Xylenes	12 000
Naphthalene	1400
TRH FI	4400
TRH F2	3300
TRH F3	4500

Contaminant	DC HSL-A			
TRH F4	6300			
Notes: TRH El is TRH Ce-Cio minus BTEX				

TRH F2 is TRH >C10-C16 minus naphthalene

2.2 Asbestos in soil

Based on the CSM, a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore, the presence or absence of asbestos at a limit of reporting of 0.1 g/kg (AS:4964) has been adopted for this investigation / assessment as an initial screen.

2.3 **Ecological investigation levels**

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website, are shown in Table 5, with inputs into their derivation shown in Table 4.

Variable	lanut	Rationale	
Variable Input		Rationale	
Age of contaminants	Potentially "Aged" (>2 years) or Fresh (<2 years)	The site was used as a contractor compound in the previous two years so contaminants may be 'fresh', however, fill is more likely to have contaminants which are more than two years old ('aged').	
рН	6.53	Average of site-specific test results	
CEC	16.57 cmol _c /kg	Average of site-specific test results	
Clay content	10%	Assumed based on field observations	
Organic carbon content	Low	Conservative (default value)	
Traffic volumes	Low	Based on site location	
State / Territory	NSW	Based on site location	
Iron Content	1%	Conservative (default value)	

Table 4: Inputs to the derivation of the ecological investigation levels

Table 5: Ecological investigation levels (mg/kg)

Contaminant	EIL-A-B-C - Fresh	EIL-A-B-C - Aged
Metals		
Arsenic	50	100
Copper	110	220

Contaminant	EIL-A-B-C - Fresh	EIL-A-B-C - Aged	
Nickel	80	240	
Chromium III	180	410	
Lead	270	1100	
Zinc	240	680	
РАН			
Naphthalene	170	170	
ОСР			
DDT	180	180	

Notes:

EIL-A-B-C urban residential and public open space

2.4 Ecological screening levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 6.

Contaminant	Soil Type	ESL-A-B-C			
TRH FI	Coarse/ Fine	180*			
TRH F2	Coarse/ Fine	120*			
B(a)P	Coarse/ Fine	0.7			
Benzene	Fine	65			
Toluene	Fine	105			
Ethylbenzene	Fine	125			
Xylenes	Fine	45			
TRH F3	Fine	1300			
TRH F4	Fine	5600			

Table 6: Ecological screening levels (mg/kg)

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6-C_{10} minus BTEX

TRH F2 is TRH >C $_{10}$ -C $_{16}$ including naphthalene

ESL-A-B-C urban residential and public open space

2.5 Management limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;

F

Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services.

The adopted management limits are in Table 7.

Table 7: Management limits (mg/kg)

Contaminant	Soil type	ML-A-B-C
TRH FI	Fine	800
TRH F2	Fine	1000
TRH F3	Fine	3500
TRH F4	Fine	10 000

Notes: TRH F1 is TRH C6-C10 including BTEX

TRH F2 is TRH >C10-C16 including naphthalene

ML-A-B-C residential, parkland and public open space

3. References

CRC CARE. (2011). Health screening levels for petroleum hydrocarbons in soil and groundwater. Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

Harwood Environmental Consultants (HEC). (2023). Site Audit Report for SAS 439, Googong Neighbourhood 2 - School site - LOT 829 DP1277372, dated 18 July 2023.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National **Environment Protection Council.**

Appendix G

Photographs

Photo 1: General view of northern portion of Lot 829 Deposited Plan 1277372, looking east (26 September 2023).

Photo 2: General view of central portion of Lot 829 Deposited Plan 1277372, looking south (26 September 2023).

Photo 3: View of various construction materials (corrugated metal roofing, wheelbarrow, timber palette) stored in the eastern portion of Lot 829 Deposited Plan 1277372, looking north west (26 September 2023).

Photo 4: View of metal fence poles and earthworks rigs in the eastern portion of Lot 829 Deposited Plan 1277372, looking north east (26 September 2023).

Douglas Partners	CLIENT: NSW Department of Education		Photographs 1 to 4	PROJECT No: 224	4779.00
	OFFICE: Wollongong	Prepared By: EB / DW	Detailed Site Investigation Contamination	PLATE No:	1
Geotechnics Environment Groundwater	SCALE: NTS	DATE: 28 Jan 2025	200 Wellsvale Drive, Googong	REVISION:	1

Photo 5: General view of western portion of Lot 829 Deposited Plan 1277372 looking south (26 September 2023).

Photo 7: General view of southern portion of the Lot 829 Deposited Plan 1277372, looking east (26 September 2023).

Photo 6: View of rubber pipe segments (dredging) and timber power poles being stored on the surface in the western portion of Lot 829 Deposited Plan 1277372, looking south (26 September 2023).

Photo 8: General view of construction compound in south western corner of the Lot 829 Deposited Plan 1277372, looking west (26 September 2023).

-	CLIENT: NSW Department of Education		l	Photographs 5 to 8		224779.00
5	OFFICE: Wollongong	Prepared By	: EB / DW	Detailed Site Investigation Contamination	PLATE No:	2
er	SCALE: NTS	DATE:	28 Jan 2025	200 Wellsvale Drive, Googong	REVISION:	1

Photo 9: View of Bore 204 (28 September 2023).

Photo 10: Photo of subsurface conditions encountered at Pit 211 (26 September 2023).

Photo 11: Photo of subsurface conditions encountered at Pit 207 (26 September 2023).

-	CLIENT: NSW Department of Education				Photographs 9 to 11
5	OFFICE:	Wollongong	Prepared By:	EB / DW	Detailed Site Investigation Contamination
57	SCALE:	NTS	DATE:	28 Jan 2025	200 Wellsvale Drive, Googong

PROJECT No:	224779.00
PLATE No:	3
REVISION:	1

Appendix H

Borehole Logs and Test Pit Logs

Terminology, Symbols and Abbreviations

Introduction to Terminology, Symbols and Abbreviations

Douglas Partners' reports, investigation logs, and other correspondence may use terminology which has quantitative or qualitative connotations. To remove ambiguity or uncertainty surrounding the use of such terms, the following sets of notes pages may be attached Douglas Partners' reports, depending on the work performed and conditions encountered:

- Soil Descriptions;
- Rock Descriptions; and
- Sampling, insitu testing, and drilling methodologies

In addition to these pages, the following notes generally apply to most documents.

Abbreviation Codes

Site conditions may also be presented in a number of different formats, such as investigation logs, field mapping, or as a written summary. In some of these formats textual or symbolic terminology may be presented using textual abbreviation codes or graphic symbols, and, where commonly used, these are listed alongside the terminology definition. For ease of identification in these note pages, textual codes are presented in these notes in the following style Xw. Code usage conforms with the following guidelines:

- Textual codes are case insensitive, although herein they are generally presented in upper case; and
- Textual codes are contextual (i.e. the same or similar combinations of characters may be used in different contexts with different meanings (for example `PL` is used for plastic limit in the context of soil moisture condition, as well as in `PL(A)` for point load test result in the testing results column).

Data Integrity Codes

Subsurface investigation data recorded by Douglas Partners is generally managed in a highly structured database environment, where records "span" between a top and bottom depth interval. Depth interval "gaps" between records are considered to introduce ambiguity, and, where appropriate, our practice guidelines may require contiguous data sets. Recording meaningful data is not always appropriate (for example assigning a "strength" to a concrete pavement) and the following codes may be used to maintain contiguity in such circumstances.

Term	Description	Abbreviation Code
Core loss	No core recovery	KL
Unknown	Information was not available to allow classification of the property. For example, when auguring in loose, saturated sand auger cuttings may not be returned.	UK
No data	Information required to allow classification of the property was not available. For example if drilling is commenced from the base of a hole predrilled by others	ND
Not Applicable	Derivation of the properties not appropriate or beyond the scope of the investigation. For example providing a description of the strength of a concrete pavement	NA

Graphic Symbols

Douglas Partners' logs contain a "graphic" column which provides a pictorial representation of the basic composition of the material. The symbols used are directly representing the material name stated in the adjacent "Description of Strata" column, and as such no specific graphic symbology legend has been provided in these notes.

intentionally blank

Introduction

All materials which are not considered to be "in-situ rock" are described in general accordance with the soil description model of AS 1726-2017 Part 6.1.3, and can be broken down into the following description structure:

The "classification" comprises a two character "group symbol" providing a general summary of dominant soil characteristics. The "name" summarises the particle sizes within the soil which most influence its behaviour. The detailed description presents more information about composition, condition, structure, and origin of the soil.

Classification, naming and description of soils require the relative proportion of particles of different sizes within the whole soil mixture to be considered.

Particle size designation and Behaviour Model

Solid particles within a soil are differentiated on the basis of size.

The engineering behaviour properties of a soil can subsequently be modelled to be either "fine grained" (also known as "cohesive" behaviour) or "coarse grained" ("non cohesive" behaviour), depending on the relative proportion of fine or coarse fractions in the soil mixture.

Particle Size	Particle Size	Behaviour Model		
Designation	(mm)	Behaviour	Approximate Dry Mass	
Boulder	>200	Excluded from particle beh-		
Cobble	63 - 200	aviour model as "oversize"		
Gravel ¹	2.36 - 63	Coarse	>65%	
Sand ¹	0.075 - 2.36	Coarse	>00%	
Silt	0.002 - 0.075	Fine	>35%	
Clay	<0.002		20070	

¹ – refer grain size subdivision descriptions below

The behaviour model boundaries defined above are not precise, and the material behaviour should be assumed from the name given to the material (which considers the particle fraction which dominates the behaviour, refer "component proportions" below), rather than strict observance of the proportions of particle sizes. For example, if a material is named a "Sandy CLAY", this is indicative that the material exhibits fine grained behaviour, even if the dry mass of coarse grained material may exceed 65%.

Component proportions

The relative proportion of the dry mass of each particle size fraction is assessed to be a "primary", "secondary", or "minor" component of the soil mixture, depending on its influence over the soil behaviour.

Component	Definition ¹	Relative P	roportion
Proportion Designation		In Fine Grained Soil	In Coarse Grained Soil
Primary	The component (particle size designation, refer above) which dominates the engineering behaviour of the soil	The clay/silt component with the greater proportion	The sand/gravel component with the greater proportion
Secondary	Any component which is not the primary, but is significant to the engineering properties of the soil	Any component with greater than 30% proportion	Any granular component with greater than 30%; or Any fine component with greater than 12%
Minor ²	Present in the soil, but not significant to its engineering properties	All other components	All other components

¹ As defined in AS1726-2017 6.1.4.4

² In the detailed material description, minor components are split into two further sub-categories. Refer "identification of minor components" below.

Composite Materials

In certain situations, a lithology description may describe more than one material, for example, collectively describing a layer of interbedded sand and clay. In such a scenario, the two materials would be described independently, with the names preceded or followed by a statement describing the arrangement by which the materials co-exist. For example, "INTERBEDDED Silty CLAY AND SAND".

Classification

The soil classification comprises a two character group symbol. The first character identifies the primary component. The second character identifies either the grading or presence of fines in a coarse grained soil, or the plasticity in a fine grained soil. Refer AS1726-2017 6.1.6 for further clarification.

Soil Name

For most soils, the name is derived with the primary component included as the noun (in upper case), preceded by any secondary components stated in an adjective form. In this way, the soil name also describes the general composition and indicates the dominant 1- for determination of component proportions, refer behaviour of the material.

Component ¹	Prominence in Soil Name
Primary	Noun (eg "CLAY")
Secondary	Adjective modifier (eg "Sandy")
Minor	No influence
-	No influence

component proportions on previous page

For materials which cannot be disaggregated, or which are not comprised of rock or mineral fragments, the names "ORGANIC MATTER" or "ARTIFICIĂL MATERIAL" may be used, in accordance with AS1726-2017 Table 14.

Commercial or colloquial names are not used for the soil name where a component derived name is possible (for example "Gravelly SAND" rather than "CRACKER DUST").

Materials of "fill" or "topsoil" origin are generally assigned a name derived from the primary/secondary component (where appropriate). In log descriptions this is preceded by uppercase "FILL" or "TOPSOIL". Origin uncertainty is indicated in the description by the characters (?), with the degree of uncertainty described (using the terms "probably" or "possibly" in the origin column, or at the end of the description).

Identification of minor components

Minor components are identified in the soil description immediately following the soil name. The minor component fraction is usually preceded with a term indicating the relative proportion of the component.

Minor Component	Relative Proportion		
Proportion Term	In Fine Grained Soil	In Coarse Grained Soil	
With	All fractions: 15-30%	Clay/silt: 5-12%	
		sand/gravel: 15-30%	
Trace	All fractions: 0-15%	Clay/silt: 0-5%	
		sand/gravel: 0-15%	

The terms "with" and "trace" generally apply only to gravel or fine particle fractions. Where cobbles/boulders are encountered in minor proportions (generally less than about 12%) the term "occasional" may be used. This term describes the sporadic distribution of the material within the confines of the investigation excavation only, and there may be considerable variation in proportion over a wider area which is difficult to factually characterise due to the relative size of the particles and the investigation methods.

Soil Composition

<u>Plasticity</u>			<u>Grain Siz</u>	<u>e</u>		
Descriptive	Laboratory liq	uid limit range		Туре		Particle size (mm)
Term	Silt	Clay	Gravel	Coarse		19 - 63
Non-plastic	Not applicable	Not applicable		Medium		6.7 - 19
materials				Fine		2.36 - 6.7
Low plasticity	≤50	≤35	Sand	Coarse		0.6 - 2.36
Medium	Not applicable	>35 and ≤50		Medium		0.21 - 0.6
plasticity				Fine		0.075 - 0.21
High plasticity	>50	>50	Grading			
Note, Plasticity descriptions generally describe the		Gradin	g Term		Particle size (mm)	
plasticity behaviour of the whole of the fine grained soil,			Well	A good representation		good representation of all
	e grained fractions.				particle sizes	
	J		Poorly	 An excess or deficiency of 		excess or deficiency of
					par	ticular sizes within the
					spe	ecified range
		Uniform	ly	Es	sentially of one size	
		Gap			leficiency of a particular size	
				ors	size range within the total	
					ran	ige

Note, AS1726-2017 provides terminology for additional attributes not listed here.

intentionally blank

Soil Condition

Moisture

The moisture condition of soils is assessed relative to the plastic limit for fine grained soils, while for coarse grained soils it is assessed based on the appearance and feel of the material. The moisture condition of a material is considered to be independent of stratigraphy (although commonly these are related), and this data is presented in its own column on logs.

Applicability	Term	Tactile Assessment	Abbreviation code
Fine	Dry of plastic limit	Hard and friable or powdery	w <pl< td=""></pl<>
	Near plastic limit	Can be moulded	w=PL
	Wet of plastic limit	Water residue remains on hands when handling	w>PL
	Near liquid limit	"oozes" when agitated	w=LL
	Wet of liquid limit	"oozes"	w>LL
Coarse	Dry	Non-cohesive and free running	D
	Moist	Feels cool, darkened in colour, particles may stick	Μ
		together	
	Wet	Feels cool, darkened in colour, particles may stick	W
		together, free water forms when handling	

The abbreviation code NDF, meaning "not-assessable due to drilling fluid use" may also be used.

Note, observations relating to free ground water or drilling fluids are provided independent of soil moisture condition.

Consistency/Density/Compaction/Cementation/Extremely Weathered Material

These concepts give an indication of how the material may respond to applied forces (when considered in conjunction with other attributes of the soil). This behaviour can vary independent of the composition of the material, and on logs these are described in an independent column and are generally mutually exclusive (i.e it is inappropriate to describe both consistency and compaction at the same time). The method by which the behaviour is described depends on the behaviour model and other characteristics of the soil as follows:

- In fine grained soils, the "consistency" describes the ease with which the soil can be remoulded, and is generally correlated against the materials undrained shear strength;
- In granular materials, the relative density describes how tightly packed the particles are, and is generally correlated against the density index;
- In anthropogenically modified materials, the compaction of the material is described qualitatively;
- In cemented soils (both natural and anthropogenic), the cemented "strength" is described qualitatively, relative to the difficulty with which the material is disaggregated; and
- In soils of extremely weathered material origin, the engineering behaviour may be governed by relic rock features, and expected behaviour needs to be assessed based the overall material description.

Quantitative engineering performance of these materials may be determined by laboratory testing or estimated by correlated field tests (for example penetration or shear vane testing). In some cases, performance may be assessed by tactile or other subjective methods, in which case investigation logs will show the estimated value enclosed in round brackets, for example (VS).

Consistency Term	Tactile Assessment	Undrained Shear Strength (kPa)	Abbreviation Code
Very soft	Extrudes between fingers when squeezed	<12	VS
Soft	Mouldable with light finger pressure	>12 - ≤25	S
Firm	Mouldable with strong finger pressure	>25 - ≤50	` F `
Stiff	Cannot be moulded by fingers	>50 - ≤100	St
Very stiff	Indented by thumbnail	>100 - ≤200	VSt
Hard	Indented by thumbnail with difficulty	>200	Н
Friable	Easily crumbled or broken into small pieces by hand	-	Fr

Consistency (fine grained soils)

Relative Density (coarse grained soils)

Relative Density Term	Density Index	Abbreviation Code
Very loose	<15	VL
Loose	>15 - ≤35	L
Medium dense	>35 - ≤65	MD
Dense	>65 - ≤85	D
Very dense	>85	VD

Note, tactile assessment of relative density is difficult, and generally requires penetration testing, hence a tactile assessment guide is not provided.

Compaction (anthropogenically modified soil)	
--	--

Compaction Term	Abbreviation Code
Well compacted	WC
Poorly compacted	PC
Moderately compacted	MC
Variably compacted	VC

Cementation (natural and anthropogenic)

Cementation Term	Abbreviation Code
Moderately cemented	MOD
Weakly cemented	WEK

Extremely Weathered Material

AS1726-2017 considers weathered material to be soil if the unconfined compressive strength is less than 0.6 MPa (i.e. less than very low strength rock). These materials may be identified as "extremely weathered material" in reports and by the abbreviation code XMM on log sheets. This identification is not correlated to any specific qualitative or quantitative behaviour, and the engineering properties of this material must therefore be assessed according to engineering principles with reference to any relic rock structure, fabric, or texture described in the description.

Soil Origin

Term	Description	Abbreviation Code
Residual	Derived from in-situ weathering of the underlying rock	RS
Extremely weathered material	Formed from in-situ weathering of geological formations. Has strength of less than 'very low' as per as1726 but retains the	XWM
	structure or fabric of the parent rock.	
Alluvial	Deposited by streams and rivers	ALV
Estuarine	Deposited in coastal estuaries	EST
Marine	Deposited in a marine environment	MAR
Lacustrine	Deposited in freshwater lakes	LAC
Aeolian	Carried and deposited by wind	AEO
Colluvial	Soil and rock debris transported down slopes by gravity	COL
Slopewash	Thin layers of soil and rock debris gradually and slowly deposited by gravity and possibly water	SW
Topsoil	Mantle of surface soil, often with high levels of organic material	ТОР
Fill	Any material which has been moved by man	FILL
Littoral	Deposited on the lake or seashore	LIT
Unidentifiable	Not able to be identified	UID

Cobbles and Boulders

The presence of particles considered to be "oversize" may be described using one of the following strategies:

- Oversize encountered in a minor proportion (when considered relative to the wider area) are noted in the soil description; or
- Where a significant proportion of oversize is encountered, the cobbles/boulders are described independent of the soil description, in a similar manner to composite soils (described above) but qualified with "MIXTURE OF".

intentionally blank

Rock strength is defined by the unconfined compressive strength, and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $I_{s(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Unconfined Compressive Strength (MPa)	Point Load Index ¹ I _{s(50)} MPa	Abbreviation Code
Very low	0.6 - 2	0.03 - 0.1	VL
Low	2 - 6	0.1 - 0.3	L
Medium	6 - 20	0.3 - 1.0	Μ
High	20 - 60	1 - 3	Н
Very high	60 - 200	3 - 10	VH
Extremely high	>200	>10	EH

¹ Rock strength classification is based on UCS. The UCS to $I_{s(50)}$ ratio varies significantly for different rock types and specific ratios may be required for each site. The point load Index ranges shown above are as suggested in AS1726 and should not be relied upon without supporting evidence.

The following abbreviation codes are used for soil layers or seams of material "within rock" but for which the equivalent UCS strength is less than 0.6 MPa.

Scenario		
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The properties of the material encountered over this interval are described in the "Description of Strata" and soil properties columns.	SOIL	
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The prominence of the material is such that it can be considered to be a seam (as defined in Table 22 of AS1726-2017) and the properties of the material are described in the defect column.	SEAM	

Degree of Weathering

The degree of weathering of rock is classified as follows:

Weathering Term	Description	Abbreviation Code
Residual Soil ¹	I Soil ¹ Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered ¹	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	XW
Highly weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.	HW
Moderately weathered		
Slightly weathered	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	SW
Fresh		
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	DW

¹ The parent rock type, of which the residual/extremely weathered material is a derivative, will be stated in the description (where discernible).

Degree of Alteration

The degree of alteration of the rock material (physical or chemical changes caused by hot gasses or liquids at depth) is classified as follows:

Term	Description	Abbreviation Code
Extremely altered	Material is altered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	ХА
Highly altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is changed by alteration. Some primary minerals are altered to clay minerals. Porosity may be increased by leaching or may be decreased due to precipitation of secondary materials in pores.	ΗΑ
Moderately altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.	MA
Slightly altered	Rock is slightly discoloured but shows little or no change of strength from fresh rock	SA
Note: If HA and MA cannot be differentiated use DA (see below)		
Distinctly altered	Rock strength usually changed by alteration. The rock may be highly discoloured, usually by staining or bleaching. Porosity may be increased by leaching or may be decreased due to precipitation of secondary minerals in pores.	DA

Degree of Fracturing

The following descriptive classification apply to the spacing of natural occurring fractures in the rock mass. It includes bedding plane partings, joints and other defects, but excludes drilling breaks. These terms are generally not required on investigation logs where fracture spacing is presented as a histogram, and where used are presented in an unabbreviated format.

Term	Description	
Fragmented	Fragments of <20 mm	
Highly Fractured	Core lengths of 20-40 mm with occasional fragments	
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections	
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm	
Unbroken	Core contains very few fractures	

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD %= <u>cumulative length of 'sound' core sections > 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e., drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

These terms may be used to describe the spacing of bedding partings in sedimentary rocks. Where used, these terms are generally presented in an unabbreviated format

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Defect Descriptions

Defect Type

Term	Abbreviation Code
Bedding plane	В
Infilled seam	IS
Cleavage	CV
Crushed zone	CZ
Decomposed seam	DS
Fault	F
Joint	JT
Lamination	LAM
Parting	Ρ
Shear zone	SZ
Vein	VN
Drilling/handling break	DB , HB
Fracture	FC

Rock Defect Orientation

Term	Abbreviation Code
Horizontal	Н
Vertical	V
Sub-horizontal	SH
Sub-vertical	SV

Rock Defect Coating

Term	Abbreviation Code
Clean	CN
Coating	СТ
Healed	HE
Infilled	INF
Stained	SN
Tight	TI
Veneer	VNR

Rock Defect Infill

Term	Abbreviation Code
Calcite	CA
Carbonaceous	CBS
Clay	CLAY
Iron oxide	FE
Manganese	MN

intentionally blank

Rock Defect Shape/Planarity

Term	Abbreviation Code
Curved	CU
Irregular	IR
Planar	PR
Stepped	ST
Undulating	UN

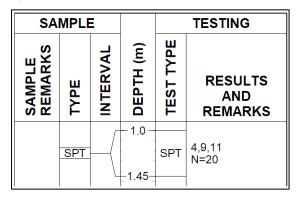
Rock Defect Roughness

Term	Abbreviation Code
Polished	PO
Rough	RF
Slickensided	SL
Smooth	SM
Very rough	VR

Defect Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

Sampling, Testing and Excavation Methodology


Terminology Symbols Abbreviations

September 2023

Sampling and Testing

A record of samples retained, and field testing performed is usually shown on a Douglas Partners' log with samples appearing to the left of a depth scale, and selected field and laboratory testing (including results, where relevant) appearing to the right of the scale, as illustrated below:

Sampling

The type or intended purpose for which a sample was taken is indicated by the following abbreviation codes.

Sample Type	Code
Auger sample	Α
Bulk sample	В
Core sample	C
Disturbed sample	D
Sample from SPT test	SPT
Environmental sample	ES
Gas sample	G
Undisturbed tube sample	U ¹
Water sample	W
Piston sample	Ρ
Core sample for unconfined	UCS
compressive strength testing	
Material Sample	MT

¹ – numeric suffixes indicate tube diameter/width in mm

The above codes only indicate that a sample was retained, and not that testing was scheduled or performed.

Field and Laboratory Testing

A record that field and laboratory testing was performed is indicated by the following abbreviation codes.

Test Type	Code
Pocket penetrometer (kPa)	PP
Photo ionisation detector (ppm)	PID
Standard Penetration Test	SPT
x/y = x blows for y mm penetration	
HB = hammer bouncing	
HW = fell under weight of hammer	
Shear vane (kPa)	V
Unconfined compressive	UCS
strength, (MPa)	

Field and laboratory testing (continued)

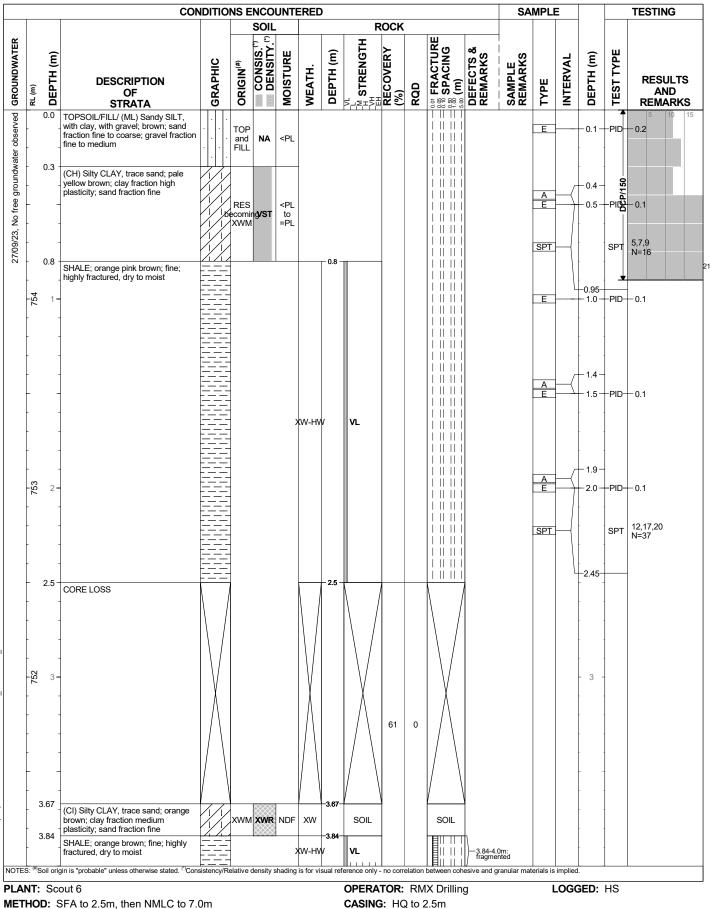
Test Type	Code
Point load test, (MPa),	PLT(_)
axial (A), diametric (D),	
irregular (I)	
Dynamic cone penetrometer,	DCP/150
followed by blow count	
penetration increment in mm	
(cone tip, generally in accordance	
with AS1289.6.3.2)	
Perth sand penetrometer, followed	PSP/150
by blow count penetration	
increment in mm	
(flat tip, generally in accordance	
with AS1289.6.3.3)	

Groundwater Observations

\triangleright	seepage/inflow			
	standing or obse	erved wate	er lev	/el
NFGWO	no free groundw	ater obse	rved	
OBS	observations c fluids	bscured	by	drilling

Drilling or Excavation Methods/Tools

The drilling/excavation methods used to perform the investigation may be shown either in a dedicated column down the left-hand edge of the log, or stated in the log footer. In some circumstances abbreviation codes may be used.


Method	Abbreviation Code
Toothed bucket	TB ¹
Mud/blade bucket	MB ¹
Ripping tyne/ripper	R
Rock breaker/hydraulic hammer	RB
Hand auger	HA ¹
NMLC series coring	NMLC
HMLC series coring	HMLC
NQ coring	NQ3
HQ coring	HQ3
PQ coring	PQ3
Push tube	PT ¹
Rock roller	RR ¹
Solid flight auger. Suffixes:	AD ¹
/T = tungsten carbide tip,	
/V = v-shaped tip	
Sonic drilling	SON ¹
Vibrocore	VC ¹
Wash bore (unspecified bit type)	WB ¹
Existing exposure	X
Hand tools (unspecified)	HAND
Predrilled	PD
Diatube	DT ¹
Hollow flight auger	HSA ¹
Vacuum excavation	VE

¹ – numeric suffixes indicate tool diameter/width in mm

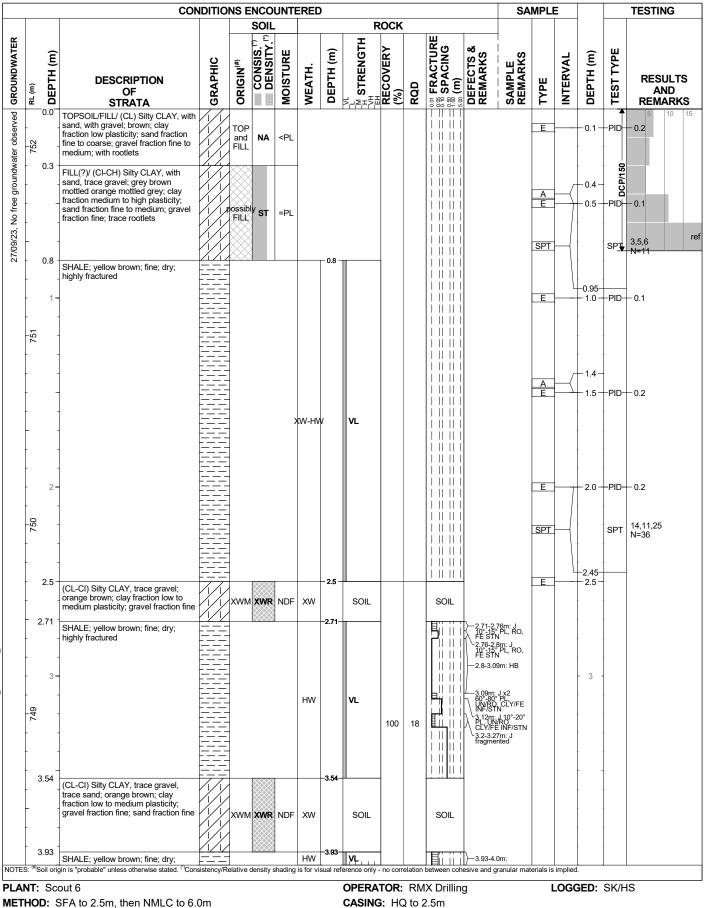
SURFACE LEVEL: 755 AHD COORDINATE E:702169 N: 6077526 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 201 PROJECT No: 224779.00 DATE: 27/09/23 SHEET: 1 of 2

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

Refer to explanatory notes for symbol and abbreviation definitions

CLIENT:School Infrastructure NSWPROJECT:Proposed New Public SchoolLOCATION:200 Wellsvale Drive, Googong

BOREHOLE LOG

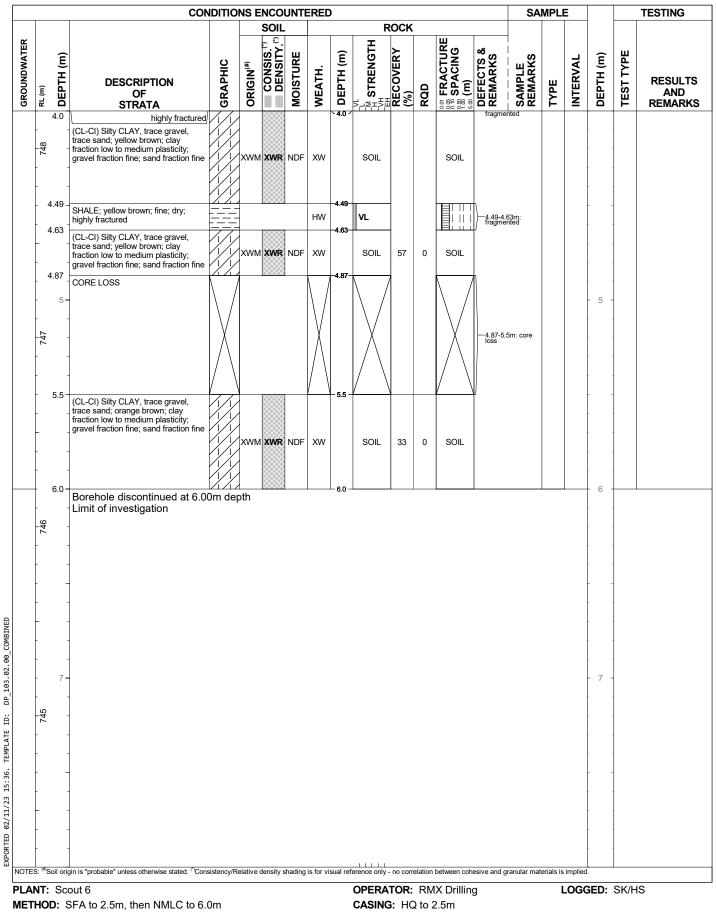

SURFACE LEVEL: 755 AHD COORDINATE E:702169 N: 6077526 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 201 PROJECT No: 224779.00 DATE: 27/09/23 SHEET: 2 of 2

			COI	NDITIO	NS E	ENCOL SOIL		ERED)	-	ROCK			SA	MPL			1	TESTING
RL (m)		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	S. .∵.	MOISTURE	WEATH.	DEPTH (m)	H STRENGTH			001 FRACTURE 88% SPACING 88% (m) 108 (m) DEFECTS & REMARKS	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARK
750		5	SHALE; orange brown; fine; highly fractured, dry to moist <i>(continued)</i>				>	хw-нv	V	VL	61	0	-4.0-4.1 fragme -4.12-3 -4.	25m: J PL, SM, O 37m: nited 42m: PL, 2SN, nited					
-		-	(CI) Silty CLAY, trace sand; orange brown; clay fraction medium plasticity; sand fraction fine		XWN	A XWR	NDF	xw	- 5.5 -	SOIL			SOIL						
-	5.7	-	SHALE; orange brown; fine; highly fractured, dry to moist					xw	-5.74-	VL			5.74-6	0m: inted					
	6 6.2 6.4	i.1 23 34 42	(CI) Silty CLAY, trace sand; orange brown; clay fraction medium plasticity; sand fraction fine SHALE; orange brown; fine; highly fractured, dry to moist (CI) Silty CLAY, trace sand; orange brown; clay fraction medium plasticity; sand fraction fine SHALE; orange brown; fine; highly fractured, dry to moist CORE LOSS Borehole discontinued at 7.0		XWN	A XWR		xw	- 6.1 -	SOIL VL SOIL VL	58	0	SOIL SOIL 6,1-6,1 FE ST FE ST 6,13-6 fragme	³ Щ; to, N 23m; infed 42m; sм, 42m; sм,			- 6 -		
TES: (#)S		- - - - - - - - - - -	Limit of investigation			density s	hading	is for vi					between cohesive and g	ranular mat					

SURFACE LEVEL: 752.2 AHD COORDINATE E:702242 N: 6077524 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 202 PROJECT No: 224779.00 DATE: 27/09/23 SHEET: 1 of 2

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

Refer to explanatory notes for symbol and abbreviation definitions


CLIENT: School Infrastructure NSW PROJECT: Proposed New Public School LOCATION: 200 Wellsvale Drive, Googong
 CLIENT:
 School Infrastructure NSW

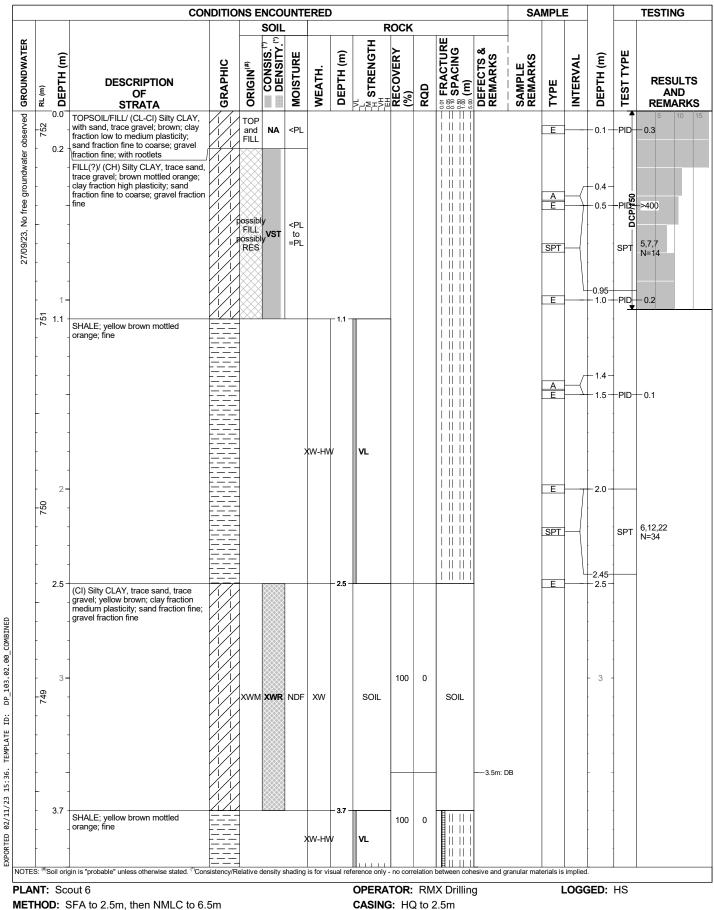
 PROJECT:
 Proposed New Public School

 LOCATION:
 200 Wellsvale Drive, Googong

BOREHOLE LOG

SURFACE LEVEL: 752.2 AHD COORDINATE E:702242 N: 6077524 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 202 PROJECT No: 224779.00 DATE: 27/09/23 SHEET: 2 of 2

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.



Geotechnics | Environment | Groundwater

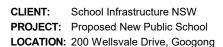
SURFACE LEVEL: 752.1 AHD COORDINATE E:702286 N: 6077486 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/---

LOCATION ID: 203 PROJECT No: 224779.00 DATE: 28/09/23 SHEET: 1 of 2

METHOD: SFA to 2.5m, then NMLC to 6.5m

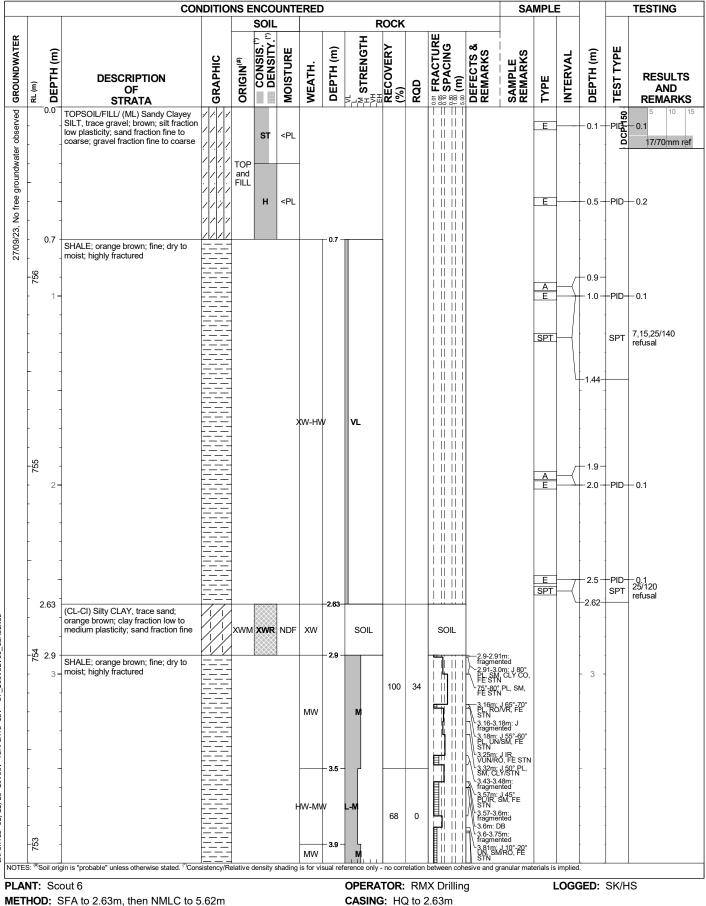
REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

Refer to explanatory notes for symbol and abbreviation definitions


BOREHOLE LOG

SURFACE LEVEL: 752.1 AHD **COORDINATE E**:702286 N: 6077486 **DATUM/GRID**: MGA94 Zone 55 **DIP/AZIMUTH**: 90°/--- LOCATION ID: 203 PROJECT No: 224779.00 DATE: 28/09/23 SHEET: 2 of 2

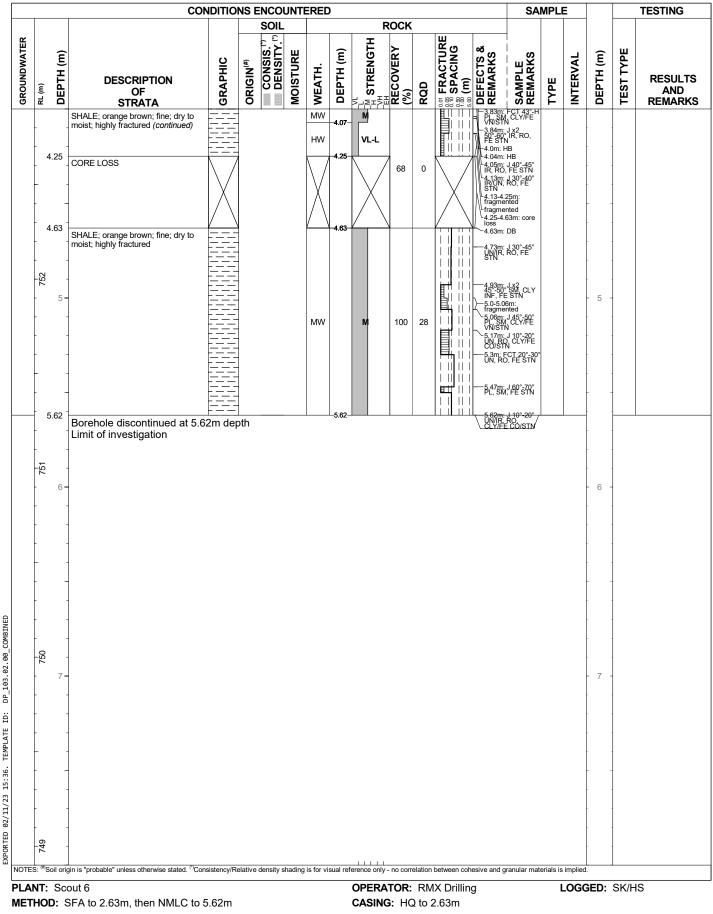
				IDITIO		SOIL			,	R	оск				JA	MPLI	_			TESTING
	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC			MOISTURE	WEATH.	DEPTH (m)	H H STRENGTH			600 FRACTURE 806 SPACING 800 (m)	DEFECTS & REMARKS	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESUL AND REMAR
	48		SHALE; yellow brown mottled orange; fine (continued)				>	w-нv	v	VL				`─4.0m: F	lВ					
-	~ 4	.14	(CL-CI) Silty CLAY, trace sand, trace gravel; orange brown; clay fraction low to medium plasticity; sand fraction fine; gravel fraction fine		хwм	XWR	NDF	xw	-4.14-	SOIL	100	0	SOIL							
	- ·	4.5 -	SHALE; yellow brown mottled orange; fine			******	>	w-нv	- 4.5 - V	VL				4.5m: C	DΒ					
	44	.65 - - 5- - - -	(CL-CI) Silty CLAY, trace sand, trace gravel; orange brown; clay fraction low to medium plasticity; sand fraction fine; gravel fraction fine		XWM	XWR	NDF	xw	-4.65-	SOIL	100	0	SOIL					- 5 -		
	-	5.5 -	CORE LOSS						- 5.5 -					-5.5-5.8	5m: core					
		.85	(CL-CI) Silty CLAY, trace sand, trace gravel; orange brown; clay fraction low to medium plasticity; sand		хwм	XWR	NDF	xw	-5.85-	SOIL			SOIL	4				- ·		
	746	-	fraction fine; gravel fraction fine SHALE; yellow brown mottled orange; fine				>	сw-нv		VL	65	0						- 6 -		
-	6	.23	(CL-CI) Silty CLAY, trace sand, trace gravel; orange brown; clay fraction low to medium plasticity; sand fraction fine; gravel fraction fine		хүм	XWR	NDF	xw	-6.23-	SOIL			SOIL						-	
	745	- - - - - - - - - -	Borehole discontinued at 6.5 Limit of investigation															- 7 -		
res	: ^(#) So	- oil orig	jin is "probable" unless otherwise stated. ^(*) Con	sistency/Re	elative c	density s	hading	is for vi	sual ref	erence only -	• no corr	elation	between coh	esive and g	ranular mat	erials is	implied		-	
	IT:	Sco	out 6							OPERA	TOR:	RM	X Drillin	g		L	OGG	ED:	HS	


REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

Douglas Partners Geotechnics | Environment | Groundwater

BOREHOLE LOG

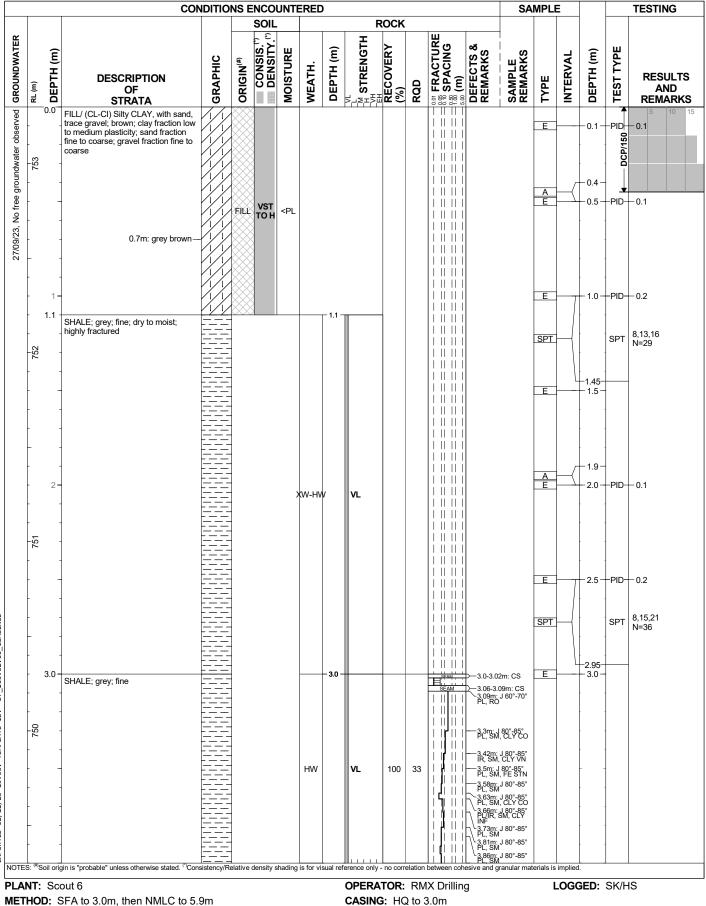
SURFACE LEVEL: 756.9 AHD COORDINATE E:702170 N: 6077431 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 204 PROJECT No: 224779.00 DATE: 28/09/23 SHEET: 1 of 2



REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

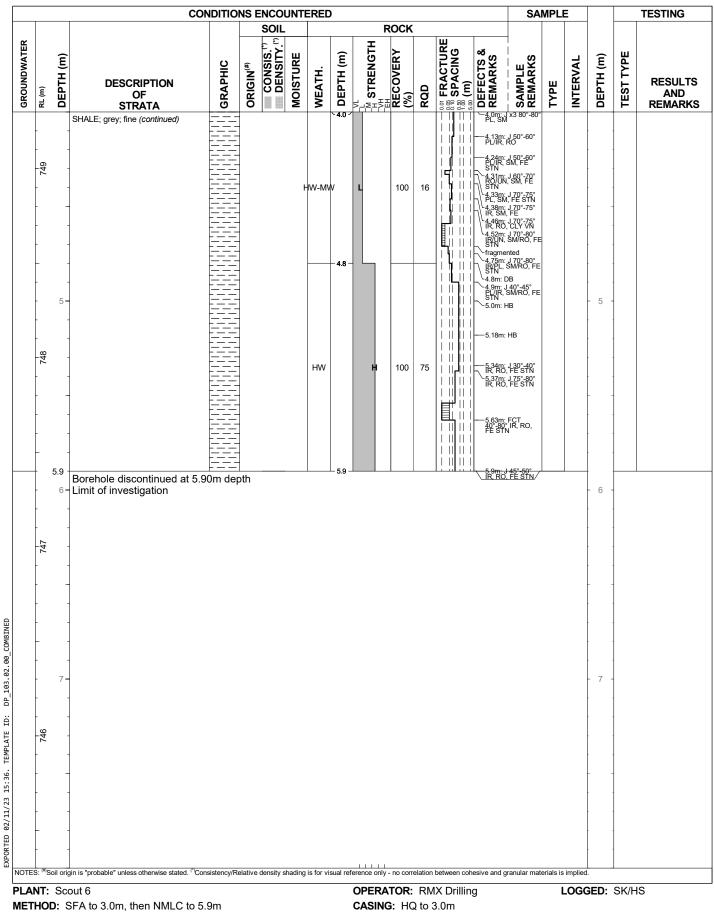
Douglas Partners Geotechnics | Environment | Groundwater

BOREHOLE LOG


SURFACE LEVEL: 756.9 AHD COORDINATE E:702170 N: 6077431 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 204 PROJECT No: 224779.00 DATE: 28/09/23 SHEET: 2 of 2

BOREHOLE LOG

SURFACE LEVEL: 753.3 AHD COORDINATE E:702341 N: 6077427 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 205 PROJECT No: 224779.00 DATE: 28/09/23 SHEET: 1 of 2

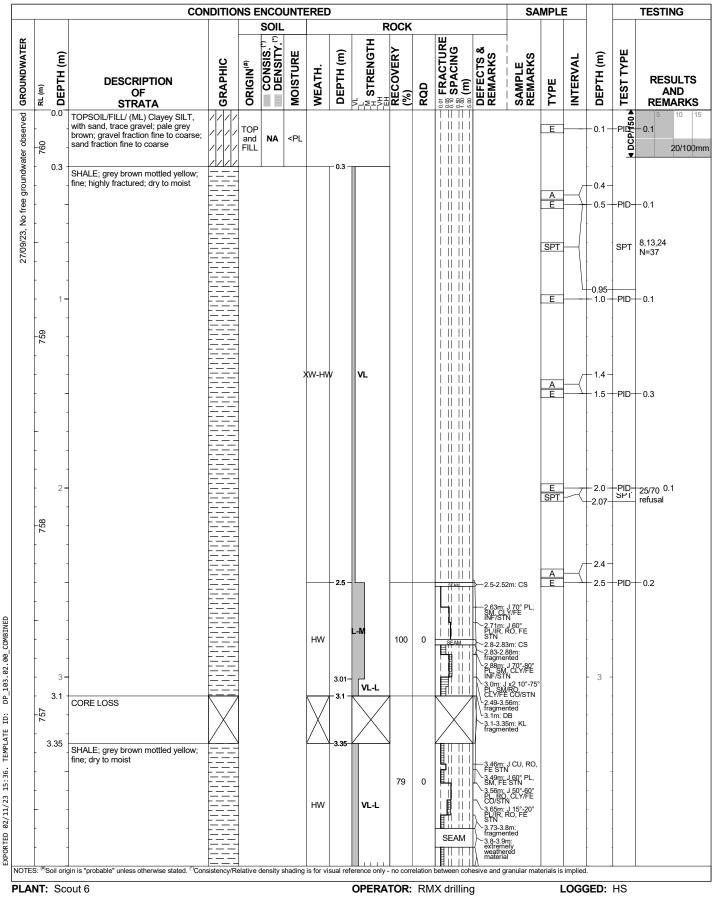


REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

Douglas Partners

BOREHOLE LOG

SURFACE LEVEL: 753.3 AHD COORDINATE E:702341 N: 6077427 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 205 PROJECT No: 224779.00 DATE: 28/09/23 SHEET: 2 of 2



SURFACE LEVEL: 760.2 AHD COORDINATE E:702169 N: 6077353 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/---

LOCATION ID: 206 PROJECT No: 224779.00 DATE: 29/09/23 SHEET: 1 of 2

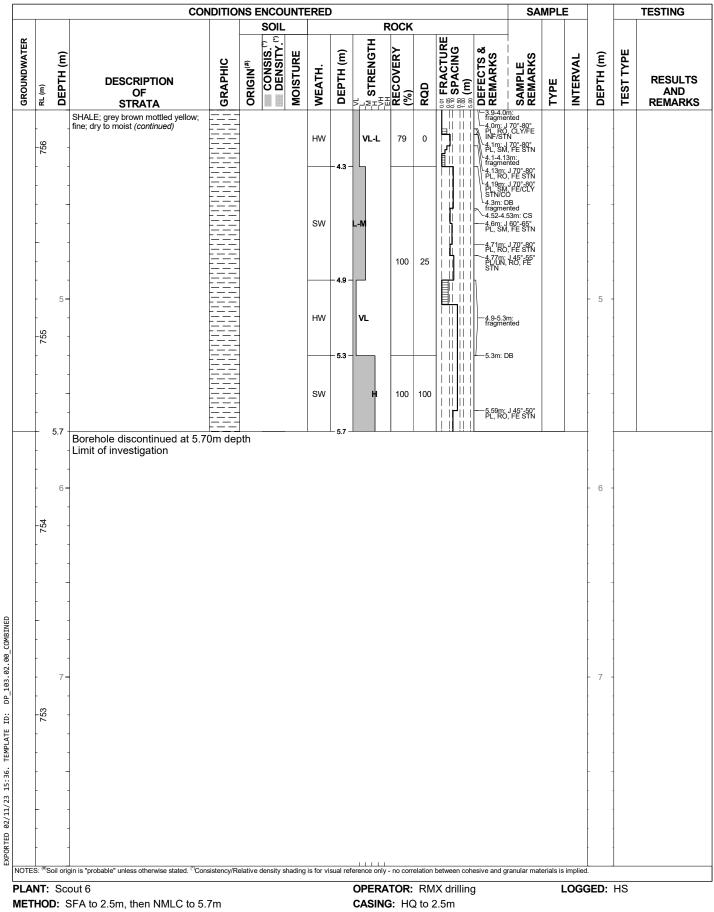
METHOD: SFA to 2.5m, then NMLC to 5.7m

CLIENT:

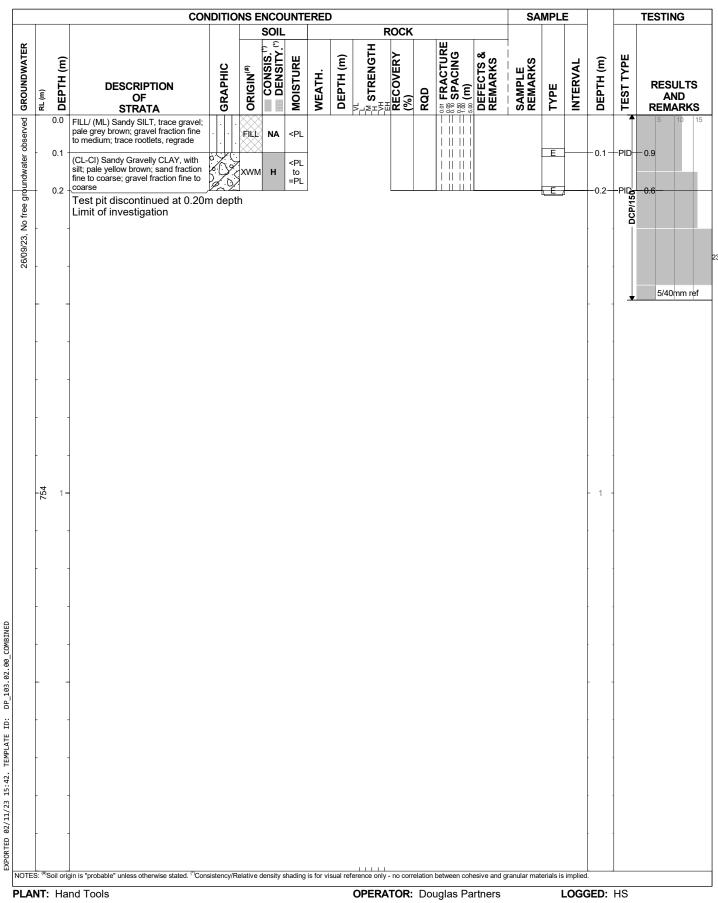
School Infrastructure NSW

PROJECT: Proposed New Public School

LOCATION: 200 Wellsvale Drive, Googong

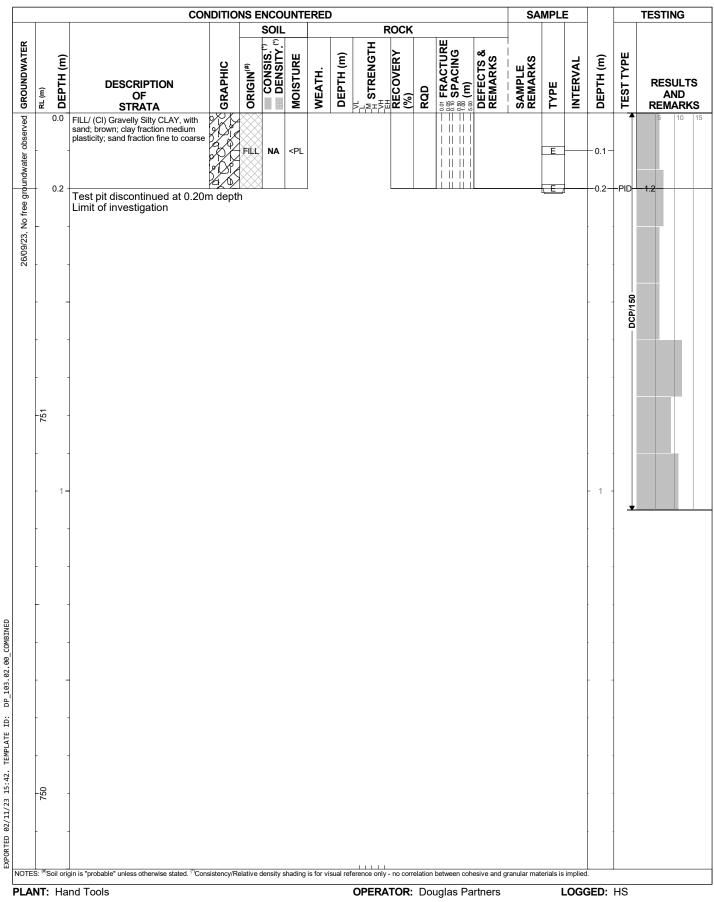

CASING: HQ to 2.5m

BOREHOLE LOG


SURFACE LEVEL: 760.2 AHD COORDINATE E:702169 N: 6077353 DATUM/GRID: MGA94 Zone 55 DIP/AZIMUTH: 90°/--- LOCATION ID: 206 PROJECT No: 224779.00 DATE: 29/09/23 SHEET: 2 of 2

TEST PIT LOG

SURFACE LEVEL: 755 AHD COORDINATE E:702173 N: 6077548 DATUM/GRID: MGA94 Zone 55 LOCATION ID: 207 PROJECT No: 224779.00 DATE: 26/09/23 SHEET: 1 of 1



METHOD: Hand Tools

TEST PIT LOG

SURFACE LEVEL: 751.8 AHD COORDINATE E:702255 N: 6077547 DATUM/GRID: MGA94 Zone 55 LOCATION ID: 208 PROJECT No: 224779.00 DATE: 26/09/23 SHEET: 1 of 1

METHOD: Hand Tools

TEST PIT LOG

SURFACE LEVEL: 755.4 AHD COORDINATE E:702173 N: 6077505 DATUM/GRID: MGA94 Zone 55 LOCATION ID: 209 PROJECT No: 224779.00 DATE: 26/09/23 SHEET: 1 of 1

			CON	IDITIO	-	NCO SOIL		RED)		ROCK			SA	MPL	E I	-		TESTING
RL (m)		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)	L STRENGTH		■ 0.01 FRACTURE ■ 0.05 SPACING ■ 0.05 (m)	DEFECTS & REMARKS	SAMPLE REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARK
-).1 -	FILL/ (ML) Sandy SILT, trace gravel; grey brown; silt fraction low plasticity; sand fraction fine to coarse; gravel fraction fine to coarse; cemented sand		FILL	NA	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>-</td><td>DCP/150</td><td>16/50mm re</td></pl<>							1			-	DCP/150	16/50mm re
	0		(SC) Clayey Silty SAND, with gravel; pale brown; sand fraction fine to coarse; gravel fraction fine to coarse;		ALV	D	D to M								E		-0.15-	-PID-	- 0.5
	ß	-	Test pit discontinued at 0.20r Limit of investigation	n deptl	ו														
	2	_																	
-		-															-		
_		-															-		
-		1-															- 1 ·		
-		-															-		
754	50	_															-	-	
-		-															-		
-		-															-		
-		-	in is "probable" unless otherwise stated. ^{(*} Con														-		

METHOD: Hand Tools

TEST PIT LOG

SURFACE LEVEL: 752.7 AHD COORDINATE E:702251 N: 6077496 DATUM/GRID: MGA94 Zone 55 LOCATION ID: 210 PROJECT No: 224779.00 DATE: 26/09/23 SHEET: 1 of 1

	CC	DNDITIC	-	COUNT OIL		כ		ROCK				SA	MPLE	E 	-		TESTING
RL (m) DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	DENSITY."	WEATH.	DEPTH (m)	H H STRENGTH	RECOVERY 0	RQD	000 FRACTURE 888 SPACING 1000 (m)	DEFECTS & REMARKS	SAMPLE	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
(III) HL430 Tar 0.0 - 0.1 - 0.2	FILL/ (ML) Sandy SiLT, trace gravel pale grey brown; silt fraction low plasticity; sand fraction fine to coarse; gravel fraction fine to (CI-CH) Silty CLAY, with gravel, trace sand; yellow brown motiled orange; clay fraction medium to higf plasticity; gravel fraction fine to coarse; sand fraction fine to coarse; trace rootlets Test pit discontinued at 0.20 Limit of investigation		XWM Y	NA <pl ST <pl TO ST =PL</pl </pl 	-								E		- 0.1 -	DCP/150	5 10
- 1 ⁻															- 1 -		
751	-															-	

METHOD: Hand Tools

TEST PIT LOG

SURFACE LEVEL: 755 AHD COORDINATE E:702212 N: 6077452 DATUM/GRID: MGA94 Zone 55 LOCATION ID: 211 PROJECT No: 224779.00 DATE: 26/09/23 SHEET: 1 of 1

1			CO	NDITION			:REL)	-					54	MPLI	Ξ		- I	TESTING
1	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	MOISTURE	WEATH.	DEPTH (m)	LL M STRENGTH	RECOVERY O	RQD	StructureStruc	DEFECTS & REMARKS	SAMPLE	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
		0.0	FILL/ (CL) Silty Sandy CLAY, trace gravel; pale brown; clay fraction low plasticity; sand fraction fine to coarse; gravel fraction fine to coarse trace rootlets Test pit discontinued at 0.20		FILL	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E</td><td></td><td>-0.15-</td><td>DCP/150</td><td>- 0.5</td></pl<>									E		-0.15-	DCP/150	- 0.5
-		-	Limit of investigation														-		
-		-															-	-	
	754	-															- 1 ·	-	
		-															-	-	
-		-															-	-	
		-															-	-	
-		-	jin is "probable" unless otherwise stated. ^(*) Cc														-	-	

METHOD: Hand Tools

TEST PIT LOG

SURFACE LEVEL: 754.7 AHD COORDINATE E:702312 N: 6077384 DATUM/GRID: MGA94 Zone 55 LOCATION ID: 212 PROJECT No: 224779.00 DATE: 26/09/23 SHEET: 1 of 1

			CON	IDITIO			JNTE	RED)	D 4					SA	MPLI	E			TESTING
RL (m)		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	IGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)	HH HH	RECOVERY (%) X2C	RQD		DEFECTS & REMARKS	SAMPLE REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	C).1 -).2 -	FILL/ (ML) Sandy SILT, trace gravel; grey brown; silt fraction low plasticity; sand fraction fine to coarse; gravel fraction fine to coarse	Ø.0?	FILL	NA VST	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>R2_/</td><td>E</td><td>-</td><td>-0.1-</td><td>-PID-</td><td>5 10 0.4</td></pl<>								R2_/	E	-	-0.1-	-PID-	5 10 0.4
750	104	-																	DCP/150	
-		1-																- 1 -	•	
753	133	-																		
- - TES: ^{(†}	#)Soi	- - Il oria	in is "probable" unless otherwise stated. ^{(*} 'Con	sistency/Re	elative d	ensity s	hading i	s for vi	sual re	 u l		alation	between c	shesive and	granular mat	terials is	implied			

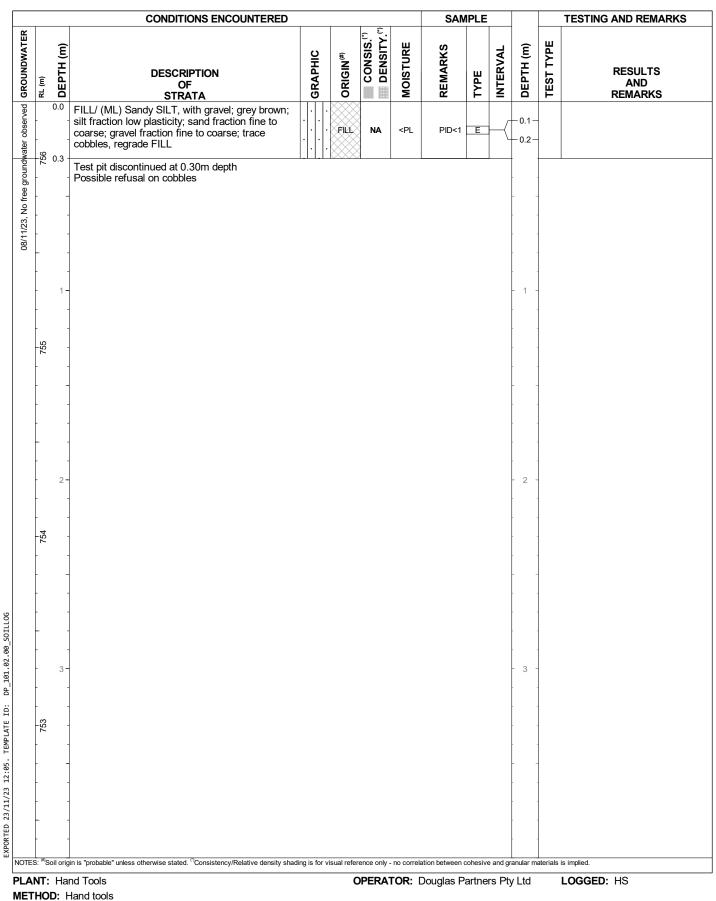
METHOD: Hand Tools

TEST PIT LOG

SURFACE LEVEL: 758.7 AHD **COORDINATE E**:702212 N: 6077328 **DATUM/GRID**: MGA94 Zone 55 LOCATION ID: 213 PROJECT No: 224779.00 DATE: 26/09/23 SHEET: 1 of 1

Normalize SOL ROCK Image: Sol in the so
grey Drown, sur fraction fire to coarse 0.1 Test pit discontinued at 0.10m depth Limit of investigation -8 -8

METHOD: Hand Tools


CLIENT:

School Infrastructure NSW

PROJECT: Proposed New Public School

LOCATION: 200 Wellsvale Drive, Googong

SURFACE LEVEL: 756.3 AHD COORDINATE E:702365 N: 6077331 DATUM/GRID: MGA94 Zone 55 LOCATION ID: 221 PROJECT No: 224779.00 DATE: 08/11/23 SHEET: 1 of 1

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 756.5 AHD COORDINATE E:702319.6 N: 6077341.8 PROJECT No: 224779.00 DATUM/GRID: MGA94 Zone 55

LOCATION ID: 222 DATE: 08/11/23 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED					SAM	IPLE				TESTING AND REMARK
					۲. ⁽¹⁾					~	ш	
RL (m)	DEPTH (m)	DESCRIPTION OF	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND
	0.0	•••••	'				R	í-	4		F	REMARKS
ł	0.1 0.2	FILL/ (ML) Clayey SILT, trace gravel, trace sand; grey brown; silt fraction low plasticity; gravel fraction fine to coarse; sand fraction fine to medium; regrade FILL		XWM	NA MD TO D	<pl D to M</pl 	PID<1	E		-0.05- -0.1-		
		(SM) Silty Gravelly SAND, trace clay; yellow brown mottled white; sand fraction fine to coarse; gravel fraction fine to coarse										
756		- Test pit discontinued at 0.20m depth Limit of investigation										
-												
-	1]								- 1 -		
-		-										
755		_										
		-										
-		-										
-	2	-								- 2 -		
-		-										
754		-										
-		-										
-		-										
-	3	-								- 3 -		
-		-										
753		-										
-		-										
-		-										
(#)0		igin is "probable" unless otherwise stated. ^(*) Consistency/Relative density sha	ding in for y	viewel vofer			4 b - b				<u> </u>	

METHOD: Hand tools

CLIENT:

School Infrastructure NSW

PROJECT: Proposed New Public School

LOCATION: 200 Wellsvale Drive, Googong

 SURFACE LEVEL:
 755.2 AHD

 COORDINATE
 E:702354.6 N: 6077399.5

 DATUM/GRID:
 MGA94 Zone 55

LOCATION ID: 223 PROJECT No: 224779.00 DATE: 08/11/23 SHEET: 1 of 1

	CONDITIONS ENCOUNTERED					SAM	IPLE				TESTING AND REMARKS
RL (m) DEPTH (m)	DESCRIPTION	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	REMARKS		INTERVAL	DEPTH (m)	TEST TYPE	RESULTS
RL (m) DEP	OF STRATA	3R4	ORI		MOI	REN	ТҮРЕ	Ë N	DEF	TES	AND REMARKS
1	FILL/ (CL) Sandy SILT, trace gravel; grey brown; silt fraction low plasticity; sand fraction fine to coarse; gravel fraction fine to coarse; regrade FILL		FILL	NA (VST)	<pl <pl to<br="">=PL</pl></pl 	R2 PID<1	_Е	-(-0.1- -0.2-	•	NEMARKO
	mottled white; clay fraction low plasticity; sand fraction fine to coarse; gravel fraction fine to coarse							-			
	Test pit discontinued at 0.25m depth Limit of investigation										
- 1-								-	• 1 -		
754								-	-		
								-			
								-	-		
- 2-								-	2 -		
753								-	-		
								-			
									-		
- 3-								-	. 3 -		
752									-		
								-			
								-	-		
S; ^(#) Soil orig	in is "probable" unless otherwise stated. ^(*) Consistency/Relative density shac	ling is for vis				on hotwoon o					ic implied

CLIENT:

School Infrastructure NSW

PROJECT: Proposed New Public School

LOCATION: 200 Wellsvale Drive, Googong

SURFACE LEVEL: 756.7 AHD COORDINATE E:702252.7 N: 6077383.4 DATUM/GRID: MGA94 Zone 55

LOCATION ID: 224 PROJECT No: 224779.00 DATE: 08/11/23 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED					SAM	IPLE				TESTING AND REMARKS
					(*) (*)		0					
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
-		FILL/ (ML) Sandy SILT, trace gravel, trace clay; grey brown; silt fraction low plasticity; sand fraction fine to coarse; gravel fraction fine to coarse; regrade FILL	· · ·	FILL RES becomin XWM	NA	<pl <pl to<br="">=PL</pl></pl 	PID<1	E		-0.05- -0.1-		
-	-	(CL-CI) Silty CLAY, trace gravel; orange brown; clay fraction low to medium plasticity; gravel fraction fine to coarse										
-	-	Test pit discontinued at 0.25m depth Limit of investigation							-			
756	-											
-	-								-			
-	1-								-	- 1 -		
F	-											
-	-								-			
-	-											
755	-											
-	-											
-	2-								_	- 2 -		
-	-								-	· ·		
-	-								-			
-	-								-	· ·		
4	-								-			
754	-								-			
-	3-								-	- 3 -		
-	-								-			
-	-											
-	-											
-	-								-			
753	-								-			
-	-											
(#)c	Soil oria	in is "probable" unless otherwise stated. ^(*) Consistency/Relative density sha	ding is for v	visual refer	ence only -	no correla	tion between c	obesive	and ar	anular m	atoriale	is implied

METHOD: Hand tools

CLIENT:

School Infrastructure NSW

PROJECT: Proposed New Public School

LOCATION: 200 Wellsvale Drive, Googong

SURFACE LEVEL: 753 AHD COORDINATE E:702299.2 N: 6077431.2 PROJECT No: 224779.00 DATUM/GRID: MGA94 Zone 55

LOCATION ID: 225 DATE: 08/11/23 SHEET: 1 of 1

	CONDITIONS ENCOUNTERED					SAM	IPLE				TESTING AND REMARKS
RL (m) DEPTH (m)		GRAPHIC	В	CONSIS. ^(*)	MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	FILL/ (ML) Sandy Clayey SILT, trace gravel; grey brown; silt fraction low plasticity; sand fraction fine to medium; gravel fraction fine to coarse; with rootlets, regrade FILL (CL-CI) Silty CLAY, trace gravel; orange brown mottled yellow; clay fraction low to medium plasticity; gravel fraction fine Test pit discontinued at 0.30m depth Limit of investigation		RES	NA (VST TO H)	<pl to<br="">=PL</pl>	PID<1	E		- 0.2		
752 1								-	- 1 -		
- <u>2</u> 2								-	- 2 -		
- - 220 - 31								-	- 3 -		
-	in is "probable" unless otherwise stated. ^(*) Consistency/Relative density shad	ing is for vi									

METHOD: Hand tools

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

CLIENT: School Infrastructure NSW PROJECT: Proposed New Public School LOCATION: 200 Wellsvale Drive, Googong

Appendix I

Summary of Results Tables

Table I1: Summary of Laboratory Results – Metals, TRH, BTEX and PAH

									Metals	;						TF	RH				BT	ΈX			PA	Ч	
Bandy Bandy <th< th=""><th></th><th></th><th></th><th></th><th>Arsenic</th><th>Cadmium</th><th>Total Chromium</th><th>Copper</th><th>Lead</th><th>Mercury (inorganic)</th><th>Nickel</th><th>Zinc</th><th>Manganese</th><th>- 92</th><th>>C10-</th><th>((C6-C10)-</th><th>F2 (>C10-C16 less Naphthalene)</th><th></th><th>(>C34-</th><th>Benzene</th><th>Toluene</th><th>Ethylbenzene</th><th>Total Xylenes</th><th></th><th>Benzo(a)pyrene (BaP)</th><th>Benzo(a)pyrene TEQ</th><th>Total PAHs</th></th<>					Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Manganese	- 92	>C10-	((C6-C10)-	F2 (>C10-C16 less Naphthalene)		(>C34-	Benzene	Toluene	Ethylbenzene	Total Xylenes		Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
bit bit bit bit bit			Comple		4	0.4	1	1	1	0.1	1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	0.1	0.05	0.5	0.05
Lin T Lind Lind <thlind< th=""> <thlind< th=""> Lind<td>Sample ID</td><td>Depth</td><td>•</td><td></td><td></td><td>mg/kg</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>mg/kg</td><td>mg/kg</td><td></td><td></td><td></td><td></td></thlind<></thlind<>	Sample ID	Depth	•			mg/kg																mg/kg	mg/kg				
Differ Differ<	201	0.1 m	Fill	27/09/23																							
Oth User Total Oth S S Oth S S Oth S		0.1 m	Fill	27/09/23					150						-	-	-	-	-	-	-	-	-	-	-	-	-
102 0.1m FII 27042 0.1m FII 0.1m FII <			Natural	27/09/23		00			35	00							200									<u> </u>	000
Abb Abb <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>90</u>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> <25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td><u>3</u> - <0.5</td> <td><u>300</u> - <0.05</td>						<u>90</u> -								 <25								-				<u>3</u> - <0.5	<u>300</u> - <0.05
100 100000 100000 000000 00000 00000 <t< td=""><td>202</td><td>0.1 m</td><td>FIII</td><td>27/09/23</td><td>300 50</td><td>90 -</td><td>300 180</td><td>17000 110</td><td>600 270</td><td>- 08</td><td>1200 80</td><td>30000 240</td><td>19000 -</td><td></td><td>- 120</td><td>50 180</td><td>280 -</td><td>- 130</td><td>- 560</td><td>0.7 65</td><td>480 105</td><td>NL 125</td><td>110 45</td><td>5 170</td><td>- 0.7</td><td>3 -</td><td>300 -</td></t<>	202	0.1 m	FIII	27/09/23	300 50	90 -	300 180	17000 110	600 270	- 08	1200 80	30000 240	19000 -		- 120	50 180	280 -	- 130	- 560	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Above Above Sol 00 Sol 00 <td>202</td> <td>1 m</td> <td>Natural</td> <td>27/09/23</td> <td></td> <td>90 -</td> <td>300 180</td> <td></td> <td>600 270</td> <td></td> <td></td> <td>30000 240</td> <td>19000 -</td> <td></td> <td>- 120</td> <td>70 180</td> <td>240 -</td> <td>- 300</td> <td>- 280</td> <td>0.5 50</td> <td>220 85</td> <td></td> <td></td> <td>NL 170</td> <td>- 0.7</td> <td>3 -</td> <td>300 -</td>	202	1 m	Natural	27/09/23		90 -	300 180		600 270			30000 240	19000 -		- 120	70 180	240 -	- 300	- 280	0.5 50	220 85			NL 170	- 0.7	3 -	300 -
1 m Fil 280 907 16 -04 23 01 00 23 050 045 050 -050 050 <td>203</td> <td>0.1 m</td> <td>Fill</td> <td>28/09/23</td> <td></td> <td>-</td> <td></td>	203	0.1 m	Fill	28/09/23																						-	
Pil Pil< Pil Pil Pil <td>203</td> <td>1 m</td> <td>Fill</td> <td>28/09/23</td> <td>16</td> <td><0.4</td> <td>23</td> <td>91</td> <td>130</td> <td><0.1</td> <td>69</td> <td>230</td> <td>6000</td> <td><25</td> <td><50</td> <td><25</td> <td><50</td> <td><100</td> <td><100</td> <td><0.2</td> <td><0.5</td> <td><1</td> <td><1</td> <td><0.1</td> <td><0.05</td> <td><0.5</td> <td>< 0.05</td>	203	1 m	Fill	28/09/23	16	<0.4	23	91	130	<0.1	69	230	6000	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	< 0.05
006 0.1m Fill 20062 0.02 <th< td=""><td>204</td><td>0.1 m</td><td>Fill</td><td>28/09/23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>•</td><td></td></th<>	204	0.1 m	Fill	28/09/23																		-				•	
Alin Fill 20002 So 10 Non 1100 1100 110 000 20 Non 1200 1000 1000 1000 1000 10000 100000000						00				00														-		<mark>3 -</mark> <0.5	<u>300</u> - <0.05
0.0 m mi 200 m 0 m 0 m 200 m 0 m 0 m 100 m	205	0.1 m	Fill	28/09/23	300 50	90 -	300 180	17000 110	600 270	- 08	1200 80	30000 240	19000 -		- 120	50 180	280 -	- 130	- 560	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
0.0 0.1 m 200/3 30 50 50 100	205	0.5 m	Fill	28/09/23		<0.4 90 -								<25												<0.5 3 -	
0.6 Naturi 299/24 190 -0.4 490 -1.2 490 -2.2 -5.0 -1.00 0.0 0.1 0.005 0.05 0.0 0.005 0.0 0.005 0.0 0.005 0.05 <th< td=""><td>206</td><td>0.1 m</td><td>Fill</td><td>29/09/23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	206	0.1 m	Fill	29/09/23																							
0.1 Fill 260023 66 0.8 33 33 86 <0.1 22 170 1500 <25 <50 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>206</td> <td>0.5 m</td> <td>Natural</td> <td>29/09/23</td> <td>180</td> <td><0.4</td> <td>45</td> <td>100</td> <td>100</td> <td><0.1</td> <td>21</td> <td>490</td> <td>420</td> <td><25</td> <td><50</td> <td><25</td> <td><50</td> <td><100</td> <td><100</td> <td><0.2</td> <td><0.5</td> <td><1</td> <td><1</td> <td><0.1</td> <td><0.05</td> <td><0.5</td> <td>< 0.05</td>	206	0.5 m	Natural	29/09/23	180	<0.4	45	100	100	<0.1	21	490	420	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	< 0.05
207 0.2m Natural 260/93 0.30 10 100 - - - 100 100 100 100 - - 100 100 - 100	207	0.1 m	Fill	26/09/23						00																•	
0.1 m 0.1 m <th< td=""><td></td><td></td><td></td><td></td><td></td><td>90 - <04</td><td></td><td></td><td></td><td>80 - <01</td><td></td><td></td><td></td><td> <25</td><td></td><td></td><td>230 - <50</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>3 - ≤0.5</td><td><u>300</u> - <0.05</td></th<>						90 - <04				80 - <01				 <25			230 - <50							-		3 - ≤0.5	<u>300</u> - <0.05
0.1 mi rm 200 9/3 300 50 90 - 300 100 1000 80 30000 240 1000 0 - - 120 0.15 mi Natural 2609/23 300 50 90 - 300 10 100 80 3000 240 1000 0 - - 120 643 80 100 - - 100 - 500 100 50.5 100 80.5	207	0.2 m	Natural	26/09/23	300 50	90 -	300 180	17000 110	600 270	80 -	1200 80	30000 240	19000 -		- 120	50 180	280 -	- 130	- 560	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
209 0.15 m Neddal 200 95.3 300 50 90 300 100 101 600 270 80 1200 0.1 - - - 120 120 - - 300 50 90 200 270 90<	208	0.1 m	Fill	26/09/23																						<0.5 3 -	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	209	0.15 m	Natural	26/09/23																							< 0.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	210	0.1 m	Fill	26/09/23	19	00	24	22	66	00	15	56	550		<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	`	< 0.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.2 m	Notural	26/00/22		00				00												-		-		•	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						90 -				00							280 -					-				<u>3</u> - ∠0.5	<u>300</u> -
212 0.1 mi Fini 26/09/23 300 50 90 300 100 110 600 270 80 120 80 200 22 130 560 0.6 65 390 105 NL 125 95 45 4 170 0.7 3 300 - 210 0.2 m Natural 26/09/23 300 50 90 300 100 10 200 22 <50 225 <50 200 20.5 <1 21 2.0	211	0.15 m	Fill	26/09/23	300 50	90 -	300 180	17000 110	600 270	80 -	1200 80	30000 240	19000 -		- 120	<u>50</u> 180	280 -	- 130	- 560	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	212	0.1 m	Fill	26/09/23																						-	
R2 $0.2 \mathrm{m}$ Natural $26/09/23$ 15 <0.4 39 38 6 <0.1 18 35 200 <25 <50 <100 <100 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	212	0.2 m	Natural	26/09/23										<25													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	R2	0.2 m	Natural	26/09/23	15	<0.4	39	38	6	<0.1	18	35	200		<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									600 270	- 08			19000 -		- 120	40 180	230 -	- 130	- 560	0.6 65	390 105			4 170	- 0.7	3 -	300 -
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					300 50	90 -	300 180	17000 110	600 270	- 08	1200 80	30000 240	19000 -		- 120	40 180	230 -	- 130	- 560	0.6 65	390 105	NL 125	95 45	4 170	- 0.7	3 -	300 -
223 0.1 - 0.2 m Natural 08/11/23 300 50 90 - 300 110 600 270 80 - 1200 80 30000 240 19000 - - - 120 50 180 280 - - 130 - 560 0.7 65 480 105 NL 125 110 45 5 170 0.7 3 300 - 224 0.05 - 0.1 m Fill 08/11/23 76 0.7 35 33 210 <0.1	222	0.05 - 0.1 m	Fill	08/11/23	300 50	90 -	300 180	17000 110	600 270	- 08	1200 80	30000 240	19000 -		- 120	40 180	230 -	- 130	- 560	0.6 65	390 105	NL 125	95 45	4 170	- 0.7	3 -	300 -
224 0.05-0.111 Fill 00/11/23 300 50 90 - 300 180 1700 110 600 270 80 - 1200 80 30000 240 19000 - - - 120 40 180 230 - - 130 - 560 0.6 65 390 105 NL 125 95 45 4 170 - 0.7 3 - 300 - 225 0.2 - 0.3 m Natural 08/11/23 23 <0.4	223	0.1 - 0.2 m	Natural	08/11/23	300 50	90 -	300 180	17000 110	600 270	- 08	1200 80	30000 240	19000 -		- 120	50 180	280 -	- 130	- 560	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
225 0.2 - 0.3 m Natural 08/11/23 23 <0.4 32 19 75 <0.1 16 110 2000 <25 <50 <25 <50 <100 <100 <0.2 <0.5 <1 <1 <0.1 <0.05 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	224	0.05 - 0.1 m	Fill	08/11/23	300 50		300 180						19000 -		- 120												
	225	0.2 - 0.3 m	Natural	08/11/23			32	19	75					<25													

HIL/HSL exceedance EIL/ESL exceedance HIL/HSL and EIL/ESL exceedance ML exceedance ML and HIL/HSL or EIL/ESL exceedance

■ Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance □ HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSI

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Reported naphthalene laboratory result obtained from BTEXN suite
- c EIL criteria applies to DDT only

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

HIL C	Public open space such as parks, playgrounds, playing fields, secondary schools and footpaths (NEPC, 2013)
HSL A/B	Residential / Low - High Density (vapour intrusion) (NEPC, 2013)
	Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE 2011)

- DC HSL A Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE, 2011)
- EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013)
- ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Table I2: Summary of Laboratory Results - Phenols, OCP, OPP, PCB and Asbestos

				Phenols				0	СР				OPP	РСВ	Asb	estos
				Total Phenols	DDT+DDE+DDD °	Aldrin & Dieldrin	Total Chlordane	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzen e	Methoxychlor	Chlorpyriphos	Total PCB	Trace Analysis	Asbestos ID
			PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0	0
Sample ID	Depth	Material Type	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-
201	0.1 m	Fill	27/09/23	<5	<0.1 400 180	<0.1	<0.1	<0.1	<0.1 340 -	<0.1	<0.1	<0.1	<0.1 250 -	<0.1	NAD	NAD
201 - [TRIPLICATE]	0.1 m	Fill	27/09/23	120 -	- 400 180	- 10 -	- 70 -	- 20 -	- 340 -	10	- 10 -	400 -	- 250 -	- 1 -	NT	NT
201	0.5 m	Natural	27/09/23	- 120 -	- 400 180	- 10 -	- 70 -	- 20 -	-	-	- 10 -	-	-	-	NT	NT
202	0.1 m	Fill	27/09/23	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD
202	1 m	Natural	27/09/23	120 -	400 180	- 10 -	- 70 -	- 20 -	340 -	10 -	10 -	400 -	250 -	-	NT	NT
203	0.1 m	Fill	28/09/23	120 - <5	400 180 <0.1	10 - <0.1	70 - <0.1	<u>20</u> - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	250 - <0.1	1 - <0.1	NAD	NAD
203	1 m	Fill	28/09/23	120 -	400 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250 -	1 -	NT	NT
204	0.1 m	Fill	28/09/23	<u>120</u> - <5	400 180 <0.1	<u>10</u> - <0.1	70 - <0.1	<u>20</u> -<0.1	<u>340</u> - <0.1	<u>10</u> -<0.1	<u>10</u> -	<u>400</u> - <0.1	<u>250</u> - <0.1	1 - <0.1	NAD	NAD
204	0.1 m	Fill	28/09/23	120 - <5	400 180 <0.1	<u>10</u> -	70 - <0.1	<u>20</u> -	<u>340</u> - <0.1	10 - <0.1	10 - <0.1	<u>400</u> - <0.1	<u>250</u> - <0.1	1 - <0.1	NAD	NAD
				120 -	400 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250 -	1 -		
205	0.5 m	Fill	28/09/23	120 - <5	400 180 <0.1	<u>10</u> -	70 - <0.1	20 - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	<u>250</u> - <0.1	1 - <0.1	NT	NT
206	0.1 m	Fill	29/09/23	120 -	400 180	10 -	70 -	20 -	340 -	10 -	10 -	400 -	250 -	1 -	NAD	NAD
206	0.5 m	Natural	29/09/23	120 - <5	400 180 <0.1	<u>10</u> -	<u>70</u> - <0.1	<u>20</u> -	<u>340</u> - <0.1	<u>10</u> - <0.1	<u>10</u> -	<u>400</u> - <0.1	<u>250</u> - <0.1	1 - <0.1	NT	NT
207	0.1 m	Fill	26/09/23	120 -	400 180	<0.1 10 -	70 -	20 -	340 -	10 -	10 -	400 -	250 -	1 -	NAD	NAD
207	0.2 m	Natural	26/09/23	- 120 -	- 400 180	- 10 -	- 70 -	- 20 -	- 340 -	- 10 -	- 10 -	400 -	- 250 -	- 1 -	NT	NT
208	0.1 m	Fill	26/09/23	<5 120 -	<0.1 400 180	<0.1 10 -	<0.1 70 -	<0.1 20 -	<0.1 340 -	<0.1 10 -	<0.1 10 -	<0.1 400 -	<0.1 250 -	<0.1 1 -	NAD	NAD
209	0.15 m	Natural	26/09/23	- 120 -	- 400 180	- 10 -	- 70 -	- 20 -	- 340 -	- 10 -	- 10 -	- 400 -	- 250 -	- 1 -	NT	NT
210	0.1 m	Fill	26/09/23	<5 120 -	<0.1 400 180	<0.1 10 -	<0.1 70 -	<0.1	<0.1 340 -	<0.1 10 -	<0.1 10 -	<0.1 400 -	<0.1 250 -	<0.1	NAD	NAD
210	0.2 m	Natural	26/09/23	- 120 -	- 400 180	- 10 -	- 70 -	- 20 -	- 340 -	- 10 -	- 10 -	- 400 -	- 250 -	- 1 -	NT	NT
211	0.15 m	Fill	26/09/23	<5	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD
212	0.1 m	Fill	26/09/23	<5	<0.1 400 180	<0.1	<0.1 70 -	<0.1	<0.1 340 -	<0.1	<0.1	<0.1 400 -	<0.1 250 -	<0.1	NAD	NAD
212	0.2 m	Natural	26/09/23	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
R2	0 m	Natural	26/09/23	120 - NT	400 180 NT	NT	70 - NT	20 - NT	340 - NT	10 - NT	10 - NT	400 - NT	250 - NT	1 - NT	NT	NT
213	0.1 m	Fill	26/09/23	120 - <5	400 180 <0.1	<0.1	70 - <0.1	<u>20</u> - <0.1	<u>340</u> - <0.1	10 - <0.1	10 - <0.1	<u>400</u> - <0.1	<u>250</u> - <0.1	1 - <0.1	NAD	NAD
221	0.1 - 0.2 m	Fill	08/11/23	120 - <5	400 180	10 - <0.1	70 - <0.1	<u>20</u> - <0.1	340 - <0.1	10 - <0.1	10 - <0.1	400 - <0.1	250 - <0.1	1 - <0.1	NAD	NAD
222	0.05 - 0.1 m	Fill	08/11/23	120 - <5	400 180 <0.1	<0.1	70 - <0.1	<u>20</u> - <0.1	340 - <0.1	10 - <0.1	<u>10</u> - <0.1	400 - <0.1	<u>250</u> - <0.1	1 - <0.1	NAD	NAD
223	0.1 - 0.2 m	Natural	08/11/23	120 -	400 180 - 400 180	10 - - 10 -	70 -	20 -	340 -	10 - - 10 -	10 -	400 - 400 -	250 -	1 - - 1 -	NT	NT
224	0.05 - 0.1 m	Fill	08/11/23	<5 120 -	<0.1 400 180	<0.1 10 -	<0.1 70 -	<0.1 20 -	<0.1 340 -	<0.1 10 -	<0.1 10 -	<0.1 400 -	<0.1 250 -	<0.1	NAD	NAD
225	0.2 - 0.3 m	Natural	08/11/23	120 -	400 180	-	70 -	20 -	340 -	10 -	10 -	400 -	250 -		NT	NT

Lab result HIL/HSL value value HIL/HSL exceedance EIL/ESL exceedance HIL/HSL and EIL/ESL exceedance ML exceedance ML and HIL/

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance I HSL 0-<1 Excee
 Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD :
 HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Reported naphthalene laboratory result obtained from BTEXN suite
- c EIL criteria applies to DDT only

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

-		······································
	HIL C	Public open space such as parks, playgrounds, playing fields, secondary schools and footpaths (NEPC, 2013)
	HSL A/B	Residential / Low - High Density (vapour intrusion) (NEPC, 2013)
	DC HSL A	Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE, 2011)
	EIL/ESL UR/POS	Urban Residential and Public Open Space (NEPC, 2013)
	ML R/P/POS	Residential, Parkland and Public Open Space (NEPC, 2013)

Douglas GROUNDED

Table I3: Summary of Laboratory Results for Prelimary Waste Classication – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB and Asbestos

							Metals							TRH				BT	EX		PAH Phenol		Phenol	OCP OP		OPP	РСВ	Asbestos		
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Manganese	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Benzo(a)pyrene (BaP)	Total PAHs	Phenol	Total Endosulfan	Total Analysed OCP	Total Analysed OPP	Total PCB	Asbestos Comment	Asbestos ID in materials	Total Asbestos
		PQL	4	0.4	1	1	1	0.1	1	1	1	25	50	100	100	50	0.2	0.5	1	1	0.05	0.05	5	0.1	0.1	0.1	0.1	0	0	0
Sample ID	Depth	Sample	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	-
201	0.1 m	Date 27/09/23	100	0.6	31	100	370	<0.1	21	230	1500	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
01 - [TRIPLICATE]	0.1 m	27/09/23	67	0.5	32	37	150	<0.1	14	200	1100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
201	0.5 m	27/09/23	57	<0.4	26	45	35	<0.1	12	200	100	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	-					-		-
202	0.1 m	27/09/23	59	0.8	38	28	120	<0.1	18	180	1100	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
202	1 m	27/09/23	27	0.4	35	46	53	<0.1	27	340	73	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	-	-	-	-	-	-	-	-
203	0.1 m	28/09/23	53	<0.4	35	27	100	<0.1	15	100	3300	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
203	1 m	28/09/23	16	<0.4	23	91	130	<0.1	69	230	6000	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	-	-	-	-	-	-	-	-
204	0.1 m	28/09/23	30	0.6	29	33	140	0.2	21	120	790	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NA
205	0.1 m	28/09/23	19	<0.4	28	28	38	<0.1	19	80	380	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAI
205	0.5 m	28/09/23	17	<0.4	37	31	13	<0.1	21	48	300	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	-	-	-	-	-	-	-	-
206	0.1 m 0.5 m	29/09/23 29/09/23	97 180	<0.4	28 45	110 100	94 100	<0.1 <0.1	13 21	180 490	550 420	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 <0.05	<0.05 <0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD -	NAD	NAE
200	0.5 m	29/09/23	66	0.8	33	33	86	<0.1	21	170	1500	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NA
207	0.2 m	26/09/23	32	<0.4	38	14	14	<0.1	18	42	350	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	-	-	-	-	-	-	-	-
208	0.1 m	26/09/23	92	2	26	57	160	<0.1	23	290	2100	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NA
209	0.15 m	26/09/23	50	1	19	18	66	<0.1	11	220	1200	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	-	-	-	-	-	-	-	-
210	0.1 m	26/09/23	19	<0.4	24	22	66	<0.1	15	56	550	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAI
210	0.2 m	26/09/23	12	<0.4	50	24	47	<0.1	18	54	840	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	<0.05	-	-	-	-	-	-	-	-
211	0.15 m	26/09/23	27	<0.4	29	8	52	<0.1	10	44	450	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NA
212	0.1 m	26/09/23	14	<0.4	32	15	19	<0.1	15	50	430	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAI
212	0.2 m	26/09/23	16	<0.4	45	48	7	<0.1	21	41	230	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	-	-	-	-	-	-
R2 213	0.2 m 0.1 m	26/09/23 26/09/23	15 26	<0.4 <0.4	39 29	38 28	6 24	<0.1 <0.1	18 18	35 53	200 520	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	- <0.05	- <0.05	- <5	- <0.1	- <0.1	- <0.1	- <0.1	- NAD	- NAD	- NAI
213	0.1 - 0.2 m	08/11/23	12	<0.4	18	19	30	<0.1	13	66	520	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	- NAD	INAD -	- NAL
222	0.05 - 0.1 m	08/11/23	27	<0.4	25	24	53	<0.1	14	110	630	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	-	-	-
223	0.1 - 0.2 m	08/11/23	20	<0.4	27	61	40	<0.1	14	73	400	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAI
224	0.05 - 0.1 m	08/11/23	76	0.7	35	33	210	<0.1	13	230	2100	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	< 0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	-	-	-
225	0.2 - 0.3 m	08/11/23	23	<0.4	32	19	75	<0.1	16	110	2000	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NA
														Classificati																
	CT1		100	20	100	NC	100	4	40	NC	NC	650	NC	NC	NC	10000	10	288	600	1000	0.8	200	288	60	<50	4	<50	NC	NC	NC
	SCC1 CLP1		500	100	1900	NC	1500	50	1050	NC	NC	650	NC	NC	NC	10000	18	518	1080	1800	10	200	518	108	<50	7.5	<50	NC	NC	NC
	CLP1 CT2		N/A 400	N/A	N/A	NC	N/A 400	N/A	N/A	NC	NC	N/A	NC NC	NC NC	NC NC	N/A 40000	N/A 40	N/A 1152	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NC NC	NC NC	NC NC
	SCC2		2000	80 400	400 7600	NC NC	6000	16 200	160 4200	NC NC	NC NC	2600 2600	NC NC	NC NC	NC	40000	40 72	2073	2400 4320	4000 7200	3.2 23	800 800	1152 2073	240 432	<50 <50	16 30	<50 <50	NC NC	NC	NC
0.	CLP2		2000 N/A	400 N/A	N/A	NC	N/A	200 N/A	4200 N/A	NC	NC	2000 N/A	NC	NC	NC	40000 N/A	N/A	2073 N/A	4320 N/A	N/A	N/A	N/A	N/A	432 N/A	×30 N/A	N/A	×30	NC	NC	NC

NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable

Notes:

a QA/QC replicate of sample listed directly below the primary sample

b Total chromium used as initial screen for chromium(VI).

c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)

d Criteria for scheduled chemicals used as an initial screen

e Criteria for Chlorpyrifos used as initial screen

f All criteria are in the same units as the reported results

PQL Practical quantitation limit

CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste

SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Appendix J

Chain of Custody, Laboratory Sample Receipt Advice and Certificates of Analysis

CERTIFICATE OF ANALYSIS 335052

Client Details	
Client	Douglas Partners Canberra
Attention	Kenton Horsley
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details	
Your Reference	<u>224779.00, Googong</u>
Number of Samples	51 Soil
Date samples received	11/10/2023
Date completed instructions received	13/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	20/10/2023	
Date of Issue	20/10/2023	
NATA Accreditation Number 2901	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Nyovan Moonean **Results Approved By** Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Liam Timmins, Organics Supervisor Nyovan Moonean, Asbestos Approved Identifier/Counter Tim Toll, Chemist (FAS) Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		335052-1	335052-2	335052-6	335052-8	335052-12
Your Reference	UNITS	201	201	202	202	203
Depth		0.1	0.5	0.1	1	0.1
Date Sampled		27/09/2023	27/09/2023	27/09/2023	27/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	95	91	95	99	96
vTRH(C6-C10)/BTEXN in Soil						
-		335052-14	335052-18	335052-24	335052-25	335052-31
vTRH(C6-C10)/BTEXN in Soil	UNITS	335052-14 203	335052-18 204	335052-24 205	335052-25 205	335052-31 206
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	203	204	205	205	206
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	203 1	204 0.1	205 0.1	205 0.5	206 0.1
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS -	203 1 28/09/2023	204 0.1 28/09/2023	205 0.1 28/09/2023	205 0.5 28/09/2023	206 0.1 29/09/2023
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	203 1 28/09/2023 Soil	204 0.1 28/09/2023 Soil	205 0.1 28/09/2023 Soil	205 0.5 28/09/2023 Soil	206 0.1 29/09/2023 Soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	203 1 28/09/2023 Soil 16/10/2023	204 0.1 28/09/2023 Soil 16/10/2023	205 0.1 28/09/2023 Soil 16/10/2023	205 0.5 28/09/2023 Soil 16/10/2023	206 0.1 29/09/2023 Soil 16/10/2023
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	203 1 28/09/2023 Soil 16/10/2023 17/10/2023	204 0.1 28/09/2023 Soil 16/10/2023 17/10/2023	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023	205 0.5 28/09/2023 Soil 16/10/2023 17/10/2023	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	203 1 28/09/2023 Soil 16/10/2023 17/10/2023 <25	204 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25	205 0.5 28/09/2023 Soil 16/10/2023 17/10/2023 <25	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	- - mg/kg mg/kg	203 1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25	204 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25	205 0.5 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	203 1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25	204 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25	205 0.5 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	203 1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <25 <0.2	204 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <25 <0.2	205 0.5 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	203 1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2	204 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2	205 0.5 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <0.2 <0.2	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	203 1 28/09/2023 Soil 16/10/2023 (725 (25) (25) (25) (25) (25) (25) (25) (2	204 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <25 <0.2 <0.2	205 0.5 28/09/2023 Soil 16/10/2023 (725 <25 <25 <25 <25 <0.2 <0.2	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	203 1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.5 <1 <1 <2	204 0.1 28/09/2023 Soil 16/10/2023 (725 (725) (7	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.5 <1 <1 <2	205 0.5 28/09/2023 Soil 16/10/2023 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	203 1 28/09/2023 Soil 16/10/2023 (725 (725) (725	204 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	205 0.1 28/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	205 0.5 28/09/2023 Soil 16/10/2023 (725 (25) (25) (25) (25) (25) (25) (25) (2	206 0.1 29/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		335052-32	335052-37	335052-38	335052-39	335052-40
Your Reference	UNITS	206	207	207	208	209
Depth		0.5	0.1	0.2	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	97	98	98	96
						<u> </u>
vTRH(C6-C10)/BTEXN in Soil						1
		335052-41	335052-42	335052-43	335052-44	335052-45
vTRH(C6-C10)/BTEXN in Soil	UNITS	335052-41 210	335052-42 210	335052-43 211	335052-44 212	335052-45 212
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	210	210	211	212	212
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	210 0.1	210 0.2	211 0.15	212 0.1	212 0.2
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS -	210 0.1 26/09/2023	210 0.2 26/09/2023	211 0.15 26/09/2023	212 0.1 26/09/2023	212 0.2 26/09/2023
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	210 0.1 26/09/2023 Soil	210 0.2 26/09/2023 Soil	211 0.15 26/09/2023 Soil	212 0.1 26/09/2023 Soil	212 0.2 26/09/2023 Soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	210 0.1 26/09/2023 Soil 16/10/2023	210 0.2 26/09/2023 Soil 16/10/2023	211 0.15 26/09/2023 Soil 16/10/2023	212 0.1 26/09/2023 Soil 16/10/2023	212 0.2 26/09/2023 Soil 16/10/2023
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023	210 0.2 26/09/2023 Soil 16/10/2023 17/10/2023	211 0.15 26/09/2023 Soil 16/10/2023 18/10/2023	212 0.1 26/09/2023 Soil 16/10/2023 18/10/2023	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 <25	210 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 <25	211 0.15 26/09/2023 Soil 16/10/2023 18/10/2023 <25	212 0.1 26/09/2023 Soil 16/10/2023 18/10/2023 <25	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	- - mg/kg mg/kg	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25	210 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25	211 0.15 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25	212 0.1 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25	210 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25	211 0.15 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25	212 0.1 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <25 <0.2	210 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2	211 0.15 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2	212 0.1 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2	210 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2	211 0.15 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2	212 0.1 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	210 0.2 26/09/2023 Soil 16/10/2023 (725 (25) (25) (25) (25) (25) (25) (25) (2	211 0.15 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	212 0.1 26/09/2023 Soil 16/10/2023 (25 <25 <25 <25 <0.2 <0.2 <0.2	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	210 0.2 26/09/2023 Soil 16/10/2023 (725 (725) (7	211 0.15 26/09/2023 Soil 16/10/2023 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	212 0.1 26/09/2023 Soil 16/10/2023 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	210 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	210 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	211 0.15 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	212 0.1 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	212 0.2 26/09/2023 Soil 16/10/2023 18/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		335052-46	335052-47	335052-48	335052-49	335052-50
Your Reference	UNITS	213	214	215	216	R1
Depth		0.1	0.2	0.2	0.1	-
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	18/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	95	95	101	106	107

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		335052-51
Your Reference	UNITS	R2
Depth		-
Date Sampled		26/09/2023
Type of sample		Soil
Date extracted	-	16/10/2023
Date analysed	-	18/10/2023
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	110

svTRH (C10-C40) in Soil						
Our Reference		335052-1	335052-2	335052-6	335052-8	335052-12
Your Reference	UNITS	201	201	202	202	203
Depth		0.1	0.5	0.1	1	0.1
Date Sampled		27/09/2023	27/09/2023	27/09/2023	27/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	95	95	93	97	92
svTRH (C10-C40) in Soil						
Our Reference		335052-14	335052-18	335052-24	335052-25	335052-31
Your Reference	UNITS	203	204	205	205	206
Depth		1	0.1	0.1	0.5	0.1
Date Sampled		28/09/2023	28/09/2023	28/09/2023	28/09/2023	29/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023

Your Reference	UNITS	203	204	205	205	206
Depth		1	0.1	0.1	0.5	0.1
Date Sampled		28/09/2023	28/09/2023	28/09/2023	28/09/2023	29/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	92	92	92	94	95

svTRH (C10-C40) in Soil						
Our Reference		335052-32	335052-37	335052-38	335052-39	335052-40
Your Reference	UNITS	206	207	207	208	209
Depth		0.5	0.1	0.2	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	18/10/2023
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	95	91	92	94	94
svTRH (C10-C40) in Soil						
Our Reference		335052-41	335052-42	335052-43	335052-44	335052-45
Your Reference	UNITS	210	210	211	212	212
Depth		0.1	0.2	0.15	0.1	0.2
Date Sampled		26/09/2023	26/00/2022	26/09/2023	26/09/2023	26/09/2023
Type of sample		20/00/2020	26/09/2023	20/03/2023		20/09/2023
		Soil	Soil	Soil	Soil	Soil
Date extracted	-					
	- -	Soil	Soil	Soil	Soil	Soil
Date extracted	- - mg/kg	Soil 16/10/2023	Soil 16/10/2023	Soil 16/10/2023	Soil 16/10/2023	Soil 16/10/2023
Date extracted Date analysed	- - mg/kg mg/kg	Soil 16/10/2023 18/10/2023	Soil 16/10/2023 18/10/2023	Soil 16/10/2023 18/10/2023	Soil 16/10/2023 18/10/2023	Soil 16/10/2023 18/10/2023
Date extracted Date analysed TRH C ₁₀ - C ₁₄		Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50
Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	mg/kg	Soil 16/10/2023 18/10/2023 <50 <100	Soil 16/10/2023 18/10/2023 <50 <100	Soil 16/10/2023 18/10/2023 <50 <100	Soil 16/10/2023 18/10/2023 <50 <100	Soil 16/10/2023 18/10/2023 <50 <100
Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	mg/kg mg/kg	Soil 16/10/2023 18/10/2023 <50 <100 <100	Soil 16/10/2023 18/10/2023 <50 <100 <100	Soil 16/10/2023 18/10/2023 <50 <100 <100	Soil 16/10/2023 18/10/2023 <50 <100 <100	Soil 16/10/2023 18/10/2023 <50 <100 <100
Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	mg/kg mg/kg mg/kg	Soil 16/10/2023 18/10/2023 <50 <100 <100 <50	Soil 16/10/2023 18/10/2023 <50 <100 <100 <50	Soil 16/10/2023 18/10/2023 <50 <100 <100 <50	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50
Date extracted Date analysed TRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36) TRH >C ₁₀ -C ₁₆	mg/kg mg/kg mg/kg mg/kg	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50 <100 <100 <50 <50	Soil 16/10/2023 18/10/2023 <50 <100 <100 <50 <50	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50
Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36) TRH >C ₁₀ - C ₁₆ TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50 <100 <100 <50 <50 <50 <50	Soil 16/10/2023 18/10/2023 <50 <100 <100 <50 <50 <50 <50	Soil 16/10/2023 18/10/2023 <50 <100 <100 <50 <50 <50 <50	Soil 16/10/2023 18/10/2023 <50
Date extracted Date analysed TRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36) TRH >C_{10} -C_{16} TRH >C_10 - C_{16} less Naphthalene (F2) TRH >C_{16} -C_{34}	mg/kg mg/kg mg/kg mg/kg mg/kg	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50	Soil 16/10/2023 18/10/2023 <50

svTRH (C10-C40) in Soil						
Our Reference		335052-46	335052-47	335052-48	335052-49	335052-50
Your Reference	UNITS	213	214	215	216	R1
Depth		0.1	0.2	0.2	0.1	-
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	18/10/2023	18/10/2023	18/10/2023	18/10/2023	18/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	94	91	92	91

svTRH (C10-C40) in Soil		
Our Reference		335052-51
Your Reference	UNITS	R2
Depth		-
Date Sampled		26/09/2023
Type of sample		Soil
Date extracted	-	16/10/2023
Date analysed	-	18/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C15 - C28	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C16 -C34	mg/kg	<100
TRH >C34 -C40	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	92

PAHs in Soil						
Our Reference		335052-1	335052-2	335052-6	335052-8	335052-12
Your Reference	UNITS	201	201	202	202	203
Depth		0.1	0.5	0.1	1	0.1
Date Sampled		27/09/2023	27/09/2023	27/09/2023	27/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	103	98	111	100	98

PAHs in Soil						
Our Reference		335052-14	335052-18	335052-24	335052-25	335052-31
Your Reference	UNITS	203	204	205	205	206
Depth		1	0.1	0.1	0.5	0.1
Date Sampled		28/09/2023	28/09/2023	28/09/2023	28/09/2023	29/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	98	103	100	104

PAHs in Soil						
Our Reference		335052-32	335052-37	335052-38	335052-39	335052-40
Your Reference	UNITS	206	207	207	208	209
Depth		0.5	0.1	0.2	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	102	100	98	92	100

PAHs in Soil						
Our Reference		335052-41	335052-42	335052-43	335052-44	335052-45
Your Reference	UNITS	210	210	211	212	212
Depth		0.1	0.2	0.15	0.1	0.2
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	98	99	102	91

PAHs in Soil					
Our Reference		335052-46	335052-47	335052-48	335052-49
Your Reference	UNITS	213	214	215	216
Depth		0.1	0.2	0.2	0.1
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	93	93	95	97

Organochlorine Pesticides in soil						
Our Reference		335052-1	335052-6	335052-12	335052-18	335052-24
Your Reference	UNITS	201	202	203	204	205
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		27/09/2023	27/09/2023	28/09/2023	28/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	107	101	100	103

Organochlorine Pesticides in soil						
Our Reference		335052-31	335052-37	335052-39	335052-41	335052-43
Your Reference	UNITS	206	207	208	210	211
Depth		0.1	0.1	0.1	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	104	101	100	100

Organochlorine Pesticides in soil				_		
Our Reference		335052-44	335052-46	335052-47	335052-48	335052-49
Your Reference	UNITS	212	213	214	215	216
Depth		0.1	0.1	0.2	0.2	0.1
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	102	104	102	99

Organophosphorus Pesticides in Soil						
Our Reference		335052-1	335052-6	335052-12	335052-18	335052-24
Your Reference	UNITS	201	202	203	204	205
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		27/09/2023	27/09/2023	28/09/2023	28/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	107	101	100	103

Organophosphorus Pesticides in Soil					_	
Our Reference		335052-31	335052-37	335052-39	335052-41	335052-43
Your Reference	UNITS	206	207	208	210	211
Depth		0.1	0.1	0.1	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	104	101	100	100

Organophosphorus Pesticides in Soil						
Our Reference		335052-44	335052-46	335052-47	335052-48	335052-49
Your Reference	UNITS	212	213	214	215	216
Depth		0.1	0.1	0.2	0.2	0.1
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	102	104	102	99

PCBs in Soil						
Our Reference		335052-1	335052-6	335052-12	335052-18	335052-24
Your Reference	UNITS	201	202	203	204	205
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		27/09/2023	27/09/2023	28/09/2023	28/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	107	101	100	103

PCBs in Soil						
Our Reference		335052-31	335052-37	335052-39	335052-41	335052-43
Your Reference	UNITS	206	207	208	210	211
Depth		0.1	0.1	0.1	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	104	101	100	100

PCBs in Soil						
Our Reference		335052-44	335052-46	335052-47	335052-48	335052-49
Your Reference	UNITS	212	213	214	215	216
Depth		0.1	0.1	0.2	0.2	0.1
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	102	104	102	99

Acid Extractable metals in soil						
Our Reference		335052-1	335052-2	335052-6	335052-8	335052-12
Your Reference	UNITS	201	201	202	202	203
Depth		0.1	0.5	0.1	1	0.1
Date Sampled		27/09/2023	27/09/2023	27/09/2023	27/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Arsenic	mg/kg	100	57	59	27	53
Cadmium	mg/kg	0.6	<0.4	0.8	0.4	<0.4
Chromium	mg/kg	31	26	38	35	35
Copper	mg/kg	100	45	28	46	27
Lead	mg/kg	370	35	120	53	100
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Manganese	mg/kg	1,500	100	1,100	73	3,300
Nickel	mg/kg	21	12	18	27	15
Zinc	mg/kg	230	200	180	340	100
Acid Extractable metals in soil						
Our Reference		335052-14	335052-18	335052-24	335052-25	335052-31

Our Reference		335052-14	335052-18	335052-24	335052-25	335052-31
Your Reference	UNITS	203	204	205	205	206
Depth		1	0.1	0.1	0.5	0.1
Date Sampled		28/09/2023	28/09/2023	28/09/2023	28/09/2023	29/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Arsenic	mg/kg	16	30	19	17	97
Cadmium	mg/kg	<0.4	0.6	<0.4	<0.4	<0.4
Chromium	mg/kg	23	29	28	37	28
Copper	mg/kg	91	33	28	31	110
Lead	mg/kg	130	140	38	13	94
Mercury	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Manganese	mg/kg	6,000	790	380	300	550
Nickel	mg/kg	69	21	19	21	13
Zinc	mg/kg	230	120	80	48	180

Acid Extractable metals in soil						
Our Reference		335052-32	335052-37	335052-38	335052-39	335052-40
Your Reference	UNITS	206	207	207	208	209
Depth		0.5	0.1	0.2	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Arsenic	mg/kg	180	66	32	92	50
Cadmium	mg/kg	<0.4	0.8	<0.4	2	1
Chromium	mg/kg	45	33	38	26	19
Copper	mg/kg	100	33	14	57	18
Lead	mg/kg	100	86	14	160	66
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Manganese	mg/kg	420	1,500	350	2,100	1,200
Nickel	mg/kg	21	22	18	23	11
Zinc	mg/kg	490	170	42	290	220

Acid Extractable metals in soil							
Our Reference		335052-41	335052-42	335052-43	335052-44	335052-45	
Your Reference	UNITS	210	210	211	212	212	
Depth		0.1	0.2	0.15	0.1	0.2	
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023	
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	
Arsenic	mg/kg	19	12	27	14	16	
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4	
Chromium	mg/kg	24	50	29	32	45	
Copper	mg/kg	22	24	8	15	48	
Lead	mg/kg	66	47	52	19	7	
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Manganese	mg/kg	550	840	450	430	230	
Nickel	mg/kg	15	18	10	15	21	
Zinc	mg/kg	56	54	44	50	41	

Acid Extractable metals in soil						
Our Reference		335052-46	335052-47	335052-48	335052-49	335052-50
Your Reference	UNITS	213	214	215	216	R1
Depth		0.1	0.2	0.2	0.1	-
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Arsenic	mg/kg	26	14	9	27	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	29	30	41	33	46
Copper	mg/kg	28	14	4	23	4
Lead	mg/kg	24	24	10	100	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Manganese	mg/kg	520	870	410	710	350
Nickel	mg/kg	18	16	16	22	17
Zinc	mg/kg	53	49	31	72	33

Acid Extractable metals in soil			
Our Reference		335052-51	335052-52
Your Reference	UNITS	R2	201 - [TRIPLICATE]
Depth		-	0.1
Date Sampled		26/09/2023	27/09/2023
Type of sample		Soil	Soil
Date prepared	-	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023
Arsenic	mg/kg	15	67
Cadmium	mg/kg	<0.4	0.5
Chromium	mg/kg	39	32
Copper	mg/kg	38	37
Lead	mg/kg	6	150
Mercury	mg/kg	<0.1	<0.1
Manganese	mg/kg	200	1,100
Nickel	mg/kg	18	14
Zinc	mg/kg	35	200

Misc Soil - Inorg						
Our Reference		335052-1	335052-6	335052-12	335052-18	335052-24
Your Reference	UNITS	201	202	203	204	205
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		27/09/2023	27/09/2023	28/09/2023	28/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg		1	1			
Our Reference		335052-31	335052-37	335052-39	335052-41	335052-43
Your Reference	UNITS	206	207	208	210	211
Depth		0.1	0.1	0.1	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		335052-44	335052-46	335052-47	335052-48	335052-49
Your Reference	UNITS	212	213	214	215	216
Depth		0.1	0.1	0.2	0.2	0.1
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Inorg - Soil				
Our Reference		335052-1	335052-13	335052-34
Your Reference	UNITS	201	203	206
Depth		0.1	0.5	1.5
Date Sampled		27/09/2023	28/09/2023	29/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	17/10/2023	17/10/2023	17/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023
pH 1:5 soil:water	pH Units	5.6	6.5	7.5

CEC				
Our Reference		335052-1	335052-13	335052-34
Your Reference	UNITS	201	203	206
Depth		0.1	0.5	1.5
Date Sampled		27/09/2023	28/09/2023	29/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	19/10/2023	19/10/2023	19/10/2023
Date analysed	-	19/10/2023	19/10/2023	19/10/2023
Exchangeable Ca	meq/100g	4.1	6.1	3.8
Exchangeable K	meq/100g	0.3	0.2	0.2
Exchangeable Mg	meq/100g	3.2	5.5	25
Exchangeable Na	meq/100g	<0.1	<0.1	0.4
Cation Exchange Capacity	meq/100g	7.7	12	30

Moisture						
Our Reference		335052-1	335052-2	335052-6	335052-8	335052-12
Your Reference	UNITS	201	201	202	202	203
Depth		0.1	0.5	0.1	1	0.1
Date Sampled		27/09/2023	27/09/2023	27/09/2023	27/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	_	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Moisture	%	6.9	16	16	13	10
Moisture Our Reference		335052-14	335052-18	335052-24	335052-25	335052-31
Your Reference	UNITS	203	204	205	205	206
	UNITS	1	0.1	0.1	0.5	0.1
Depth Data Sampled		28/09/2023	28/09/2023	28/09/2023	28/09/2023	29/09/2023
Date Sampled Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	_	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	_	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Moisture	%	19	6.5	7.6	5.2	8.0
Molotare		10	0.0	1.0	0.2	0.0
Moisture		335052-32	335052-37	335052-38	335052-30	335052-40
Our Reference	LINITS	335052-32	335052-37	335052-38	335052-39 208	335052-40
Our Reference Your Reference	UNITS	206	207	207	208	209
Our Reference Your Reference Depth	UNITS	206 0.5	207 0.1	207 0.2	208 0.1	209 0.15
Our Reference Your Reference Depth Date Sampled	UNITS	206 0.5 29/09/2023	207 0.1 26/09/2023	207 0.2 26/09/2023	208 0.1 26/09/2023	209 0.15 26/09/2023
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS	206 0.5 29/09/2023 Soil	207 0.1 26/09/2023 Soil	207 0.2 26/09/2023 Soil	208 0.1 26/09/2023 Soil	209 0.15 26/09/2023 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared		206 0.5 29/09/2023 Soil 16/10/2023	207 0.1 26/09/2023 Soil 16/10/2023	207 0.2 26/09/2023 Soil 16/10/2023	208 0.1 26/09/2023 Soil 16/10/2023	209 0.15 26/09/2023 Soil 16/10/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	-	206 0.5 29/09/2023 Soil 16/10/2023 17/10/2023	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023	207 0.2 26/09/2023 Soil 16/10/2023 17/10/2023	208 0.1 26/09/2023 Soil 16/10/2023 17/10/2023	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture		206 0.5 29/09/2023 Soil 16/10/2023	207 0.1 26/09/2023 Soil 16/10/2023	207 0.2 26/09/2023 Soil 16/10/2023	208 0.1 26/09/2023 Soil 16/10/2023	209 0.15 26/09/2023 Soil 16/10/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture	-	206 0.5 29/09/2023 Soil 16/10/2023 17/10/2023 15	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 3.5	207 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 9.1	208 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 7.5	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023 3.7
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference	- - %	206 0.5 29/09/2023 Soil 16/10/2023 17/10/2023 15 3335052-41	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 3.5 335052-42	207 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 9.1 3335052-43	208 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 7.5	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023 3.7 335052-45
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference	-	206 0.5 29/09/2023 Soil 16/10/2023 17/10/2023 15 3335052-41 210	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 3.5 335052-42 210	207 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 9.1 3335052-43 211	208 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 7.5 3335052-44 212	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023 3.7 335052-45 212
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth	- - %	206 0.5 29/09/2023 Soil 16/10/2023 17/10/2023 15 335052-41 210 0.1	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 3.5 335052-42 210 0.2	207 0.2 26/09/2023 Soil 16/10/2023 9.1 335052-43 211 0.15	208 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 7.5 3335052-44 212 0.1	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023 3.7 335052-45 212 0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled	- - %	206 0.5 29/09/2023 Soil 16/10/2023 17/10/2023 15 3335052-41 210 0.1 26/09/2023	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 3.5 335052-42 210 0.2 26/09/2023	207 0.2 26/09/2023 Soil 16/10/2023 17/10/2023 9.1 3335052-43 211 0.15 26/09/2023	208 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 7.5 335052-44 212 0.1 26/09/2023	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023 3.7 335052-45 212 0.2 26/09/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled Type of sample	- - %	206 0.5 29/09/2023 Soil 16/10/2023 17/10/2023 15 335052-41 210 0.1 26/09/2023 Soil	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 3.5 335052-42 210 0.2 26/09/2023 Soil	207 0.2 26/09/2023 Soil 16/10/2023 9.1 335052-43 211 0.15 26/09/2023 Soil	208 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 7.5 335052-44 212 0.1 26/09/2023 Soil	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023 3.7 335052-45 212 0.2 26/09/2023 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled Type of sample Date prepared	- - %	206 0.5 29/09/2023 Soil 16/10/2023 15 335052-41 210 0.1 26/09/2023 Soil 16/10/2023	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 3.5 335052-42 210 0.2 26/09/2023 Soil 16/10/2023	207 0.2 26/09/2023 Soil 16/10/2023 9.1 335052-43 211 0.15 26/09/2023 Soil 16/10/2023	208 0.1 26/09/2023 Soil 16/10/2023 7.5 335052-44 212 0.1 26/09/2023 Soil 16/10/2023	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023 3.7 335052-45 212 0.2 26/09/2023 Soil 16/10/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled Type of sample	- - %	206 0.5 29/09/2023 Soil 16/10/2023 17/10/2023 15 335052-41 210 0.1 26/09/2023 Soil	207 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 3.5 335052-42 210 0.2 26/09/2023 Soil	207 0.2 26/09/2023 Soil 16/10/2023 9.1 335052-43 211 0.15 26/09/2023 Soil	208 0.1 26/09/2023 Soil 16/10/2023 17/10/2023 7.5 335052-44 212 0.1 26/09/2023 Soil	209 0.15 26/09/2023 Soil 16/10/2023 17/10/2023 3.7 335052-45 212 0.2 26/09/2023 Soil

Moisture						
Our Reference		335052-46	335052-47	335052-48	335052-49	335052-50
Your Reference	UNITS	213	214	215	216	R1
Depth		0.1	0.2	0.2	0.1	-
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/10/2023	16/10/2023	16/10/2023	16/10/2023	16/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
Moisture	%	9.1	8.9	4.3	2.2	4.6

Moisture		
Our Reference		335052-51
Your Reference	UNITS	R2
Depth		-
Date Sampled		26/09/2023
Type of sample		Soil
Date prepared	-	16/10/2023
Date analysed	-	17/10/2023
Moisture	%	8.2

Asbestos ID - soils						
Our Reference		335052-1	335052-6	335052-12	335052-18	335052-24
Your Reference	UNITS	201	202	203	204	205
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		27/09/2023	27/09/2023	28/09/2023	28/09/2023	28/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 30g	Approx. 35g	Approx. 35g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Red fine-grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		335052-31	335052-37	335052-39	335052-41	335052-43
Your Reference	UNITS	206	207	208	210	211
Depth		0.1	0.1	0.1	0.1	0.15
Date Sampled		29/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Sample mass tested	g	Approx. 30g	Approx. 35g	Approx. 40g	Approx. 35g	Approx. 35g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils						
Our Reference		335052-44	335052-46	335052-47	335052-48	335052-49
Your Reference	UNITS	212	213	214	215	216
Depth		0.1	0.1	0.2	0.2	0.1
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	20/10/2023	20/10/2023	20/10/2023	20/10/2023	20/10/2023
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 35g	Approx. 40g	Approx. 35g
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	335052-6
Date extracted	-			16/10/2023	1	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			17/10/2023	1	17/10/2023	17/10/2023		17/10/2023	17/10/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	127	130
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	127	130
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	130	127
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	129	121
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	124	134
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	125	135
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	127	137
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	105	1	95	94	1	112	99

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	335052-47
Date extracted	-			[NT]	31	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			[NT]	31	17/10/2023	17/10/2023		17/10/2023	18/10/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	31	<25	<25	0	125	124
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	31	<25	<25	0	125	124
Benzene	mg/kg	0.2	Org-023	[NT]	31	<0.2	<0.2	0	128	129
Toluene	mg/kg	0.5	Org-023	[NT]	31	<0.5	<0.5	0	123	122
Ethylbenzene	mg/kg	1	Org-023	[NT]	31	<1	<1	0	124	123
m+p-xylene	mg/kg	2	Org-023	[NT]	31	<2	<2	0	125	124
o-Xylene	mg/kg	1	Org-023	[NT]	31	<1	<1	0	137	128
Naphthalene	mg/kg	1	Org-023	[NT]	31	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	31	98	99	1	102	96

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	46	16/10/2023	16/10/2023			[NT]
Date analysed	-			[NT]	46	18/10/2023	18/10/2023			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	46	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	46	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	46	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	46	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	46	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	46	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	46	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	46	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	46	95	109	14	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	335052-6
Date extracted	-			16/10/2023	1	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			18/10/2023	1	17/10/2023	17/10/2023		18/10/2023	17/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	118	126
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	106	112
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	71	114
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	118	126
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	106	112
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	71	114
Surrogate o-Terphenyl	%		Org-020	88	1	95	92	3	94	101

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	335052-47
Date extracted	-			[NT]	31	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			[NT]	31	17/10/2023	17/10/2023		18/10/2023	18/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	31	<50	<50	0	131	129
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	31	<100	<100	0	114	119
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	31	<100	<100	0	114	90
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	31	<50	<50	0	131	129
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	31	<100	<100	0	114	119
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	31	<100	<100	0	114	90
Surrogate o-Terphenyl	%		Org-020	[NT]	31	95	96	1	100	104

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	46	16/10/2023	16/10/2023		[NT]	
Date analysed	-			[NT]	46	18/10/2023	18/10/2023		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	46	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	46	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	46	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	46	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	46	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	46	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	46	94	91	3	[NT]	[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	335052-6
Date extracted	-			16/10/2023	1	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			17/10/2023	1	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	97
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	101
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	93
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	100
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	102
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	105
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	91
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	94	100
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	97	1	103	101	2	83	90

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	335052-47
Date extracted	-			[NT]	31	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			[NT]	31	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	97	90
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	103	91
Fluorene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	97	90
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	100	92
Anthracene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	106	96
Pyrene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	103	101
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	93	79
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	31	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	31	<0.05	<0.05	0	108	94
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	31	104	98	6	91	84

QUAL	ITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	46	16/10/2023	16/10/2023			[NT]
Date analysed	-			[NT]	46	17/10/2023	17/10/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	46	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	46	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	46	93	95	2		[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	335052-6
Date extracted	-			16/10/2023	1	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			17/10/2023	1	17/10/2023	17/10/2023		17/10/2023	17/10/2023
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	108
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	106
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	101
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	109
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	106
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	111
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	124
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	105
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	100
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	140	140
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	101	1	106	105	1	94	101

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	335052-47
Date extracted	-				31	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-				31	17/10/2023	17/10/2023		17/10/2023	17/10/2023
alpha-BHC	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	102	100
НСВ	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	102	98
gamma-BHC	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	95	91
delta-BHC	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	107	105
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	106	104
gamma-Chlordane	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	115	111
Dieldrin	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	120	114
Endrin	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	103	107
Endosulfan II	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	98	102
Endrin Aldehyde	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	120	120
Methoxychlor	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		31	104	103	1	98	93

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	46	16/10/2023	16/10/2023			[NT]
Date analysed	-			[NT]	46	17/10/2023	17/10/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	46	102	101	1		[NT]

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	335052-6
Date extracted	-			16/10/2023	1	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			17/10/2023	1	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	121
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	104
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	105
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	116
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	108
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	109
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	104
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	101	1	106	105	1	94	101

QUALITY CONTRC	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	335052-47
Date extracted	-				31	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-				31	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Dichlorvos	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	121	109
Mevinphos	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	97	97
Fenitrothion	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	101	105
Malathion	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	105	106
Chlorpyriphos	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	104	102
Fenthion	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	93	111
Bromophos-ethyl	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	94	96
Phosalone	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		31	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		31	104	103	1	98	93

QUALITY CONTR	OL: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	46	16/10/2023	16/10/2023			[NT]
Date analysed	-			[NT]	46	17/10/2023	17/10/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025	[NT]	46	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	46	102	101	1		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	335052-6
Date extracted	-			16/10/2023	1	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			17/10/2023	1	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	110	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	101	1	106	105	1	94	101

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	335052-47
Date extracted	-			[NT]	31	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			[NT]	31	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	31	<0.1	<0.1	0	121	80
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	31	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	31	104	103	1	98	93

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	46	16/10/2023	16/10/2023		[NT]	
Date analysed	-			[NT]	46	17/10/2023	17/10/2023		[NT]	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	46	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	46	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	46	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	46	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	46	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	46	<0.1	<0.1	0	[NT]	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	46	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	46	102	101	1	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	335052-6
Date prepared	-			16/10/2023	1	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			17/10/2023	1	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Arsenic	mg/kg	4	Metals-020	<4	1	100	62	47	107	92
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	0.6	0.5	18	98	84
Chromium	mg/kg	1	Metals-020	<1	1	31	28	10	120	84
Copper	mg/kg	1	Metals-020	<1	1	100	39	88	105	103
Lead	mg/kg	1	Metals-020	<1	1	370	160	79	99	97
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	113	121
Manganese	mg/kg	1	Metals-020	<1	1	1500	1000	40	102	#
Nickel	mg/kg	1	Metals-020	<1	1	21	15	33	102	85
Zinc	mg/kg	1	Metals-020	<1	1	230	200	14	105	108

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	335052-47
Date prepared	-			[NT]	31	16/10/2023	16/10/2023		16/10/2023	16/10/2023
Date analysed	-			[NT]	31	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Arsenic	mg/kg	4	Metals-020	[NT]	31	97	100	3	105	102
Cadmium	mg/kg	0.4	Metals-020	[NT]	31	<0.4	<0.4	0	99	83
Chromium	mg/kg	1	Metals-020	[NT]	31	28	26	7	108	94
Copper	mg/kg	1	Metals-020	[NT]	31	110	130	17	103	108
Lead	mg/kg	1	Metals-020	[NT]	31	94	93	1	109	90
Mercury	mg/kg	0.1	Metals-021	[NT]	31	<0.1	<0.1	0	119	115
Manganese	mg/kg	1	Metals-020	[NT]	31	550	540	2	102	#
Nickel	mg/kg	1	Metals-020	[NT]	31	13	13	0	102	85
Zinc	mg/kg	1	Metals-020	[NT]	31	180	220	20	98	84

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	46	16/10/2023	16/10/2023			
Date analysed	-			[NT]	46	17/10/2023	17/10/2023			
Arsenic	mg/kg	4	Metals-020	[NT]	46	26	27	4		
Cadmium	mg/kg	0.4	Metals-020	[NT]	46	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	46	29	31	7		
Copper	mg/kg	1	Metals-020	[NT]	46	28	33	16		
Lead	mg/kg	1	Metals-020	[NT]	46	24	27	12		
Mercury	mg/kg	0.1	Metals-021	[NT]	46	<0.1	<0.1	0		
Manganese	mg/kg	1	Metals-020	[NT]	46	520	460	12		
Nickel	mg/kg	1	Metals-020	[NT]	46	18	19	5		
Zinc	mg/kg	1	Metals-020	[NT]	46	53	58	9		

QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	335052-6
Date prepared	-			17/10/2023	1	16/10/2023	16/10/2023		17/10/2023	17/10/2023
Date analysed	-			17/10/2023	1	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	104	88
QUALITY	CONTROL	: Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
QUALITY Test Description	CONTROL Units	: Misc Soi PQL	il - Inorg Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re [NT]	covery % [NT]
				Blank [NT]	# 41			RPD		
Test Description	Units					Base	Dup.	RPD	[NT]	[NT]

QUALITY	CONTROL	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			17/10/2023	[NT]			[NT]	17/10/2023	
Date analysed	-			17/10/2023	[NT]			[NT]	17/10/2023	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	100	[NT]

QU	ALITY CONT	ROL: CE	C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			19/10/2023	[NT]		[NT]	[NT]	19/10/2023	
Date analysed	-			19/10/2023	[NT]		[NT]	[NT]	19/10/2023	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	101	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	104	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	95	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	112	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

MISC_INORG_DRY:

Samples were out of the recommended holding time for this analysis pH.

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 335052-1 for As, Cu, Pb and Mn. Therefore a triplicate result has been issued as laboratory sample number 335052-52.

- # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to ASB-001 asbestos subsampling procedure. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab/MPL recommends supplying 40-60g or 500ml of sample in its own container.

Note: Samples requested for testing were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Kenton Horsley

Sample Login Details	
Your reference	224779.00, Googong
Envirolab Reference	335052
Date Sample Received	11/10/2023
Date Instructions Received	13/10/2023
Date Results Expected to be Reported	20/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	51 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Updated COC received: 13/10/2023, 1040

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	CEC	Asbestos ID - soils	On Hold
201-0.1	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
201-0.5	 ✓ 	✓	\checkmark				✓					
201-1												\checkmark
201-1.5												\checkmark
201-2												✓
202-0.1	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark			\checkmark	
202-0.5												\checkmark
202-1	✓	✓	✓				✓				✓	
202-1.5												\checkmark
202-2												\checkmark
202-2.5												✓
203-0.1	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
203-0.5									\checkmark	\checkmark		
203-1	\checkmark	\checkmark	\checkmark				\checkmark					
203-1.5												✓
203-2												\checkmark
203-2.5												\checkmark
204-0.1	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark			\checkmark	
204-0.5												\checkmark
204-1												\checkmark
204-1.5												\checkmark
204-2												\checkmark
204-2.5												\checkmark
205-0.1	✓	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	✓			✓	
205-0.5	✓	✓	\checkmark				✓					
205-1												\checkmark
205-1.5												\checkmark
205-2												\checkmark
205-2.5												\checkmark
205-3												\checkmark
206-0.1	✓	✓	\checkmark	✓	\checkmark	✓	✓	✓			\checkmark	
206-0.5	✓	✓	✓				✓					

Envirolab	Services	Pty	Ltd
-----------	----------	-----	-----

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	CEC	Asbestos ID - soils	On Hold
206-1												✓
206-1.5									✓	✓		
206-2												✓
206-2.5												✓
207-0.1	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓			\checkmark	
207-0.2	✓	✓	\checkmark				\checkmark					
208-0.1	✓	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	✓			\checkmark	
209-0.15	✓	\checkmark	\checkmark				\checkmark					
210-0.1	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark			\checkmark	
210-0.2	\checkmark	\checkmark	\checkmark				\checkmark					
211-0.15	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark			\checkmark	
212-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
212-0.2	\checkmark	\checkmark	\checkmark				\checkmark					
213-0.1	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark			\checkmark	
214-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
215-0.2	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
216-0.1	\checkmark	✓	✓	✓	\checkmark	✓	✓	\checkmark			\checkmark	
R1	\checkmark	\checkmark					\checkmark					
R2	\checkmark	✓					\checkmark					

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CHAIN OF CUSTODY DESPATCH SHEET

Proje	ct No:	224779	.00		Subur	b:	Googo							To:	Enviro	lab Sen	deer.	
	ct Manager:					Number:		<u> </u>		Samp	ler:			10.				ood NSW 2067
Emai				louglaspart			_							Attn:	Sampl			
	around time:				48 hour			Same da						<u> </u>		10 620		samplereceipt@envirolab.com.au
Prior	Storage: 🗸	Fridge 🔄	Freezer	Esky [Do sam	ples co	ntain '	poten	tial' HB	M? 🖸	' No	Yes	(If YE	S, then h	andle, tr	ansport	and store in accordance with FPM HAZID)
		Imple ID	·	pled	Sample Type	Container Type		r		<u> </u>		Analyte	S					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Combo 8A (incl. Mn	Combo 3 (incl. Mn(pH, CEC	Combo 1m								Notes/ Preservation/ Additional Requirements
1	201	0.1		27/09/23	S	G	x		х	1 -		1					<u> </u>	
2	201	0.5		27/09/23	S	G							<u> </u>					
3_	201	1		27/09/23	S	G		х				<u> </u>						
4	201	1.5		27/09/23	S	G						<u> </u>						
5	201	2		27/09/23	S	G								-				
6	202	0.1		27/09/23	S	G	х											
7	202	0.5		27/09/23	S	G		-						-				
8	202	1		27/09/23	s	G		x										
9	202	1.5		27/09/23	s	G												
10	202	2		27/09/23	s	G												
<u>u</u>	202	2.5		27/09/23	s	G			_									
12	203	0.1		28/09/23	s	G	х											
13	203	0.5		28/09/23	s	G			х									
14	203	1		28/09/23	s	G		x										
ı5	203	1.5		28/09/23	s	G												
	to analyse:		8hm + N	In								<u> </u>	L					<u> </u>
	er of sample results to:					Transpor	ted to	labora	tory by	y:	FedX				Lab Re			35052
Addres			Partners I Shennard !	Street, Hume	ACT act	Dhono: /	00) 600	0 0700							Receiv			
	uished by:	HS HS	oneppaid (Jucci, nuille			02) 626			Signed	•	HS						0/23,1045
										Signed	•	10			Signed	: KV	<u>v _</u>	

CHAIN OF CUSTODY DESPATCH SHEET

Proje	ct No:	224779	.00		Subur	<u>. </u>	Googo										<u></u>	<u> </u>
Proje	ct Manager:	Kenton	Horsley	_	<u> </u>			<u></u>							To:	atch da	lab Serv	10/10/2023
	Sa	mple ID		led	Sample Type	Container Type						Analyt	les					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	ss tic	Combo 8A (incl. Mn	Combo 3 (incl. Mn(pH, CEC	Combo 1m								Notes/ Preservation/ Additional Requirements
16	203	2		28/09/23	s	G					<u> </u>	\uparrow		-}				
17	203	2.5		28/09/23	s	G				<u> </u>		1						
18	204	0.1		28/09/23	s	G	х			† —			+		+ -	<u> </u>	<u> </u>	
19	204	0.5		28/09/23	S	G						-					<u>}</u> _	
20	204	1		28/09/23	s	G						<u> </u>			+	† —		
21	204	1.5		28/09/23	S	G						<u> </u>		_			1	
22	204	2		28/09/23	S	G										+ -		
23	204	2.5		28/09/23	s	G					[1	† —	
24	205	0.1		28/09/23	s	G	x									<u> </u>	 	
25	205	0.5		28/09/23	S	G		x										
26	205	1		28/09/23	s	G							1	1				· · · · · · · · · · · · · · · · · · ·
27	205	1.5		28/09/23	s	G		_						1		<u> </u>		
28	205	2		28/09/23	s	G												
29	205	2.5		28/09/23	S	G												
30	205	3		28/09/23	S	G							<u> </u>		<u> </u>			
31	206	0.1		29/09/23	s	G	x							+	<u> </u>			
32	206	0.5		29/09/23	s	G		x						+	┼──			
33	206	1		29/09/23	s	G								1				#235059
34	206	1.5		29/09/23	s	G	-		х						1			#335052 11/10/23
35	206	2		29/09/23	S	G						_						
36	206	2.5		29/09/23	s	G								1				

CHAIN OF CUSTODY DESPATCH SHEET

Projec		224779			Subur	o:	Googo	ng			 			To:	Envirol	ab Servi	ices
Projec	t Manager:	Kenton	Horsley	·										Dispa	tch dat		10/10/2023
		mple ID	<u>, </u>	pled	Sample Type	Container Type					 Analyte	S					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M -	G - glass P - plastic	Combo 8A (incl. Mn	Combo 3 (incl. Mn(pH, CEC	Combo 1m							Notes/ Preservation/ Additional Requirements
37	207	0.1		26/09/23	S	G	х						1 -	- <u> </u>			
38	207	0.2		26/09/23	S	G		х									
૩૧	208	0.1		26/09/23	S	G	х										
40	209	0.15		26/09/23	S	G		х									
41	210	0.1		26/09/23	s	G	х							-			
42	210	0.2		26/09/23	S	G		х									
43	211	0.15		26/09/23	S	G	x										
44	212	0.1		26/09/23	s_	G	х										
45	212	0.2		26/09/23	S	G		х									
ÿ-G	213	0.1		26/09/23	S	G	х		_								
47	214	0.2		26/09/23	S	G	х									_	
48	215	0.2		26/09/23	S	G	х										
49	216	0.1		26/09/23	S	G	х										
50	R1			26/09/23	S	G				х							
51	R2			26/09/23	S	G				х					-		
5/6	R3			29/09/23	S	G				x							Please send ALS (TRH/BTEX 9HM (8 HM + Mn))
											 		<u>+-</u>				#335052
┝											 		<u> </u>				11/10/23

CERTIFICATE OF ANALYSIS 337513

Client Details	
Client	Douglas Partners Canberra
Attention	Kenton Horsley
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details	
Your Reference	<u>224779.00, Googong</u>
Number of Samples	10 Soil
Date samples received	10/11/2023
Date completed instructions received	10/11/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	17/11/2023
Date of Issue	17/11/2023
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diana Korniewicz, Chemist Diego Bigolin, Inorganics Supervisor Liam Timmins, Organics Supervisor Lucy Zhu, Asbestos Supervisor Tim Toll, Chemist (FAS) Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil											
Our Reference		337513-1	337513-2	337513-3	337513-4	337513-5					
Your Reference	UNITS	217	218	219	220	221					
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2					
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023					
Type of sample		Soil	Soil	Soil	Soil	Soil					
Date extracted	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023					
Date analysed	-	17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023					
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25					
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25					
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25					
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2					
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1					
m+p-xylene	mg/kg	<2	<2	<2	<2	<2					
o-Xylene	mg/kg	<1	<1	<1	<1	<1					
Naphthalene	mg/kg	<1	<1	<1	<1	<1					
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1					
Surrogate aaa-Trifluorotoluene	%	85	81	78	86	84					
vTRH(C6-C10)/BTEXN in Soil						1					
		337513-6	337513-7	337513-8	337513-9	337513-10					
vTRH(C6-C10)/BTEXN in Soil	UNITS	337513-6 222	337513-7 223	337513-8 224	337513-9 225	337513-10 226					
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS										
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	222	223	224	225	226					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	222 0.05-0.1	223 0.1-0.2	224 0.05-0.1	225 0.2-0.3	226 0.1-0.15					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS -	222 0.05-0.1 08/11/2023	223 0.1-0.2 08/11/2023	224 0.05-0.1 08/11/2023	225 0.2-0.3 08/11/2023	226 0.1-0.15 08/11/2023					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	222 0.05-0.1 08/11/2023 Soil	223 0.1-0.2 08/11/2023 Soil	224 0.05-0.1 08/11/2023 Soil	225 0.2-0.3 08/11/2023 Soil	226 0.1-0.15 08/11/2023 Soil					
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023	223 0.1-0.2 08/11/2023 Soil 13/11/2023	224 0.05-0.1 08/11/2023 Soil 13/11/2023	225 0.2-0.3 08/11/2023 Soil 13/11/2023	226 0.1-0.15 08/11/2023 Soil 13/11/2023					
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	222 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023	223 0.1-0.2 08/11/2023 Soil 13/11/2023 17/11/2023	224 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023	225 0.2-0.3 08/11/2023 Soil 13/11/2023 17/11/2023	226 0.1-0.15 08/11/2023 Soil 13/11/2023 17/11/2023					
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25	223 0.1-0.2 08/11/2023 Soil 13/11/2023 17/11/2023 <25	224 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25	225 0.2-0.3 08/11/2023 Soil 13/11/2023 17/11/2023 <25	226 0.1-0.15 08/11/2023 Soil 13/11/2023 17/11/2023 <25					
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	- - mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25	223 0.1-0.2 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25	224 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25	225 0.2-0.3 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25	226 0.1-0.15 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25					
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25	223 0.1-0.2 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25	224 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25	225 0.2-0.3 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25	226 0.1-0.15 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25					
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)Benzene	- - mg/kg mg/kg mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <25 <0.2	223 0.1-0.2 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2	224 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2	225 0.2-0.3 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <25 <0.2	226 0.1-0.15 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2					
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2 <0.2	223 0.1-0.2 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <25 <0.2 <0.2	224 0.05-0.1 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <25 <0.2 <0.2	225 0.2-0.3 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2 <0.2	226 0.1-0.15 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <0.2 <0.2					
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	223 0.1-0.2 08/11/2023 Soil 13/11/2023 (725 <25 <25 <25 <25 <0.2 <0.2 <0.5	224 0.05-0.1 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <25 <0.2 <0.2 <0.5	225 0.2-0.3 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	226 0.1-0.15 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5					
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	223 0.1-0.2 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	224 0.05-0.1 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	225 0.2-0.3 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	226 0.1-0.15 08/11/2023 Soil 13/11/2023 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2					
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 (725 (725) (72	223 0.1-0.2 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	224 0.05-0.1 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	225 0.2-0.3 08/11/2023 Soil 13/11/2023 (725 (725) (725	226 0.1-0.15 08/11/2023 Soil 13/11/2023 17/11/2023 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1					

svTRH (C10-C40) in Soil						
Our Reference		337513-1	337513-2	337513-3	337513-4	337513-5
Your Reference	UNITS	217	218	219	220	221
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Date analysed	-	15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	90	91	92	02
	/0	91	90	91	92	93
svTRH (C10-C40) in Soil		91	90	91	92	93
		337513-6	337513-7	337513-8	337513-9	93 337513-10
svTRH (C10-C40) in Soil	UNITS					
svTRH (C10-C40) in Soil Our Reference		337513-6	337513-7	337513-8	337513-9	337513-10
svTRH (C10-C40) in Soil Our Reference Your Reference		337513-6 222	337513-7 223	337513-8 224	337513-9 225	337513-10 226
svTRH (C10-C40) in Soil Our Reference Your Reference Depth		337513-6 222 0.05-0.1	337513-7 223 0.1-0.2	337513-8 224 0.05-0.1	337513-9 225 0.2-0.3	337513-10 226 0.1-0.15
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled		337513-6 222 0.05-0.1 08/11/2023	337513-7 223 0.1-0.2 08/11/2023	337513-8 224 0.05-0.1 08/11/2023	337513-9 225 0.2-0.3 08/11/2023	337513-10 226 0.1-0.15 08/11/2023
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample		337513-6 222 0.05-0.1 08/11/2023 Soil	337513-7 223 0.1-0.2 08/11/2023 Soil	337513-8 224 0.05-0.1 08/11/2023 Soil	337513-9 225 0.2-0.3 08/11/2023 Soil	337513-10 226 0.1-0.15 08/11/2023 Soil
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted		337513-6 222 0.05-0.1 08/11/2023 Soil 13/11/2023	337513-7 223 0.1-0.2 08/11/2023 Soil 13/11/2023	337513-8 224 0.05-0.1 08/11/2023 Soil 13/11/2023	337513-9 225 0.2-0.3 08/11/2023 Soil 13/11/2023	337513-10 226 0.1-0.15 08/11/2023 Soil 13/11/2023
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	UNITS - -	337513-6 222 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023	337513-7 223 0.1-0.2 08/11/2023 Soil 13/11/2023 15/11/2023	337513-8 224 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023	337513-9 225 0.2-0.3 08/11/2023 Soil 13/11/2023 15/11/2023	337513-10 226 0.1-0.15 08/11/2023 Soil 13/11/2023 15/11/2023
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	UNITS - - mg/kg	337513-6 222 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50	337513-7 223 0.1-0.2 08/11/2023 Soil 13/11/2023 15/11/2023 <50	337513-8 224 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50	337513-9 225 0.2-0.3 08/11/2023 Soil 13/11/2023 15/11/2023 <50	337513-10 226 0.1-0.15 08/11/2023 Soil 13/11/2023 15/11/2023 <50
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	UNITS - - mg/kg mg/kg	337513-6 222 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100	337513-7 223 0.1-0.2 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100	337513-8 224 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100	337513-9 225 0.2-0.3 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100	337513-10 226 0.1-0.15 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C10 - C14 TRH C15 - C28 TRH C29 - C36	UNITS - mg/kg mg/kg mg/kg	337513-6 222 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100	337513-7 223 0.1-0.2 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100	337513-8 224 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100	337513-9 225 0.2-0.3 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100	337513-10 226 0.1-0.15 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg	337513-6 222 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50	337513-7 223 0.1-0.2 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50	337513-8 224 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50	337513-9 225 0.2-0.3 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50	337513-10 226 0.1-0.15 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50
svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 -C16	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	337513-6 222 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50 <50 <50	337513-7 223 0.1-0.2 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50 <50 <50	337513-8 224 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50 <50 <50	337513-9 225 0.2-0.3 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50 <50 <50	337513-10 226 0.1-0.15 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50 <50 <50
svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 - C_{16}TRH >C10 - C_{16} less Naphthalene (F2)	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	337513-6 222 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50 <50 <50 <50	337513-7 223 0.1-0.2 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <100 <50 <50 <50 <50	337513-8 224 0.05-0.1 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <100 <50 <50 <50 <50 <50	337513-9 225 0.2-0.3 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50 <50 <50 <50	337513-10 226 0.1-0.15 08/11/2023 Soil 13/11/2023 15/11/2023 <50 <100 <100 <50 <50 <50 <50

%

93

90

90

91

Surrogate o-Terphenyl

94

PAHs in Soil						
Our Reference		337513-1	337513-2	337513-3	337513-4	337513-5
Your Reference	UNITS	217	218	219	220	221
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Date analysed	-	16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	112	113	112	112	112

PAHs in Soil						
Our Reference		337513-6	337513-7	337513-8	337513-9	337513-10
Your Reference	UNITS	222	223	224	225	226
Depth		0.05-0.1	0.1-0.2	0.05-0.1	0.2-0.3	0.1-0.15
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Date analysed	-	16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	113	113	109	110	112

Organochlorine Pesticides in soil						
Our Reference		337513-2	337513-4	337513-5	337513-6	337513-8
Your Reference	UNITS	218	220	221	222	224
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.05-0.1	0.05-0.1
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Date analysed	-	16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	124	123	122	120	119

Organochlorine Pesticides in soil		
Our Reference		337513-10
Your Reference	UNITS	226
Depth		0.1-0.15
Date Sampled		08/11/2023
Type of sample		Soil
Date extracted	-	13/11/2023
Date analysed	-	16/11/2023
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Mirex	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	123

Organophosphorus Pesticides in Soil						
Our Reference		337513-2	337513-4	337513-5	337513-6	337513-8
Your Reference	UNITS	218	220	221	222	224
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.05-0.1	0.05-0.1
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Date analysed	-	16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	124	123	122	120	119

Organophosphorus Pesticides in Soil		
Our Reference		337513-10
Your Reference	UNITS	226
Depth		0.1-0.15
Date Sampled		08/11/2023
Type of sample		Soil
Date extracted	-	13/11/2023
Date analysed	-	16/11/2023
Dichlorvos	mg/kg	<0.1
Mevinphos	mg/kg	<0.1
Phorate	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Disulfoton	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Parathion-Methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Fenthion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Methidathion	mg/kg	<0.1
Fenamiphos	mg/kg	<0.1
Ethion	mg/kg	<0.1
Phosalone	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Coumaphos	mg/kg	<0.1
Surrogate TCMX	%	123

PCBs in Soil						
Our Reference		337513-2	337513-4	337513-5	337513-6	337513-8
Your Reference	UNITS	218	220	221	222	224
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.05-0.1	0.05-0.1
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Date analysed	-	16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	124	123	122	120	119

PCBs in Soil					
Our Reference		337513-10			
Your Reference	UNITS	226			
Depth		0.1-0.15			
Date Sampled		08/11/2023			
Type of sample		Soil			
Date extracted	-	13/11/2023			
Date analysed	-	16/11/2023			
Aroclor 1016	mg/kg	<0.1			
Aroclor 1221	mg/kg	<0.1			
Aroclor 1232	mg/kg	<0.1			
Aroclor 1242	mg/kg	<0.1			
Aroclor 1248	mg/kg	<0.1			
Aroclor 1254	mg/kg	<0.1			
Aroclor 1260	mg/kg	<0.1			
Total +ve PCBs (1016-1260)	mg/kg	<0.1			
Surrogate TCMX	%	123			

Acid Extractable metals in soil										
Our Reference		337513-1	337513-2	337513-3	337513-4	337513-5				
Your Reference	UNITS	217	218	219	220	221				
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2				
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023				
Type of sample		Soil	Soil	Soil	Soil	Soil				
Date prepared	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023				
Date analysed	-	14/11/2023	14/11/2023	14/11/2023	14/11/2023	14/11/2023				
Arsenic	mg/kg	17	120	15	26	12				
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4				
Chromium	mg/kg	20	23	19	27	18				
Copper	mg/kg	15	160	10	22	19				
Lead	mg/kg	19	910	26	43	30				
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1				
Nickel	mg/kg	24	14	10	16	13				
Manganese	mg/kg	350	540	240	430	530				
Zinc	mg/kg	57	140	47	70	66				
Acid Extractable metals in soil			Acid Extractable metals in soil							
Our Reference		337513-6	337513-7	337513-8	337513-9	337513-10				
Our Reference Your Reference	UNITS	337513-6 222	337513-7 223	337513-8 224	337513-9 225	337513-10 226				
	UNITS									
Your Reference	UNITS	222	223	224	225	226				
Your Reference Depth	UNITS	222 0.05-0.1	223 0.1-0.2	224 0.05-0.1	225 0.2-0.3	226 0.1-0.15				
Your Reference Depth Date Sampled	UNITS -	222 0.05-0.1 08/11/2023	223 0.1-0.2 08/11/2023	224 0.05-0.1 08/11/2023	225 0.2-0.3 08/11/2023	226 0.1-0.15 08/11/2023				
Your Reference Depth Date Sampled Type of sample		222 0.05-0.1 08/11/2023 Soil	223 0.1-0.2 08/11/2023 Soil	224 0.05-0.1 08/11/2023 Soil	225 0.2-0.3 08/11/2023 Soil	226 0.1-0.15 08/11/2023 Soil				
Your Reference Depth Date Sampled Type of sample Date prepared		222 0.05-0.1 08/11/2023 Soil 13/11/2023	223 0.1-0.2 08/11/2023 Soil 13/11/2023	224 0.05-0.1 08/11/2023 Soil 13/11/2023	225 0.2-0.3 08/11/2023 Soil 13/11/2023	226 0.1-0.15 08/11/2023 Soil 13/11/2023				
Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	-	222 0.05-0.1 08/11/2023 Soil 13/11/2023 14/11/2023	223 0.1-0.2 08/11/2023 Soil 13/11/2023 14/11/2023	224 0.05-0.1 08/11/2023 Soil 13/11/2023 14/11/2023	225 0.2-0.3 08/11/2023 Soil 13/11/2023 14/11/2023	226 0.1-0.15 08/11/2023 Soil 13/11/2023 14/11/2023				
Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Arsenic	- - mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 14/11/2023 27	223 0.1-0.2 08/11/2023 Soil 13/11/2023 14/11/2023 20	224 0.05-0.1 08/11/2023 Soil 13/11/2023 14/11/2023 76	225 0.2-0.3 08/11/2023 Soil 13/11/2023 14/11/2023 23	226 0.1-0.15 08/11/2023 Soil 13/11/2023 14/11/2023 5				
Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Arsenic Cadmium	- - mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 14/11/2023 27 <0.4	223 0.1-0.2 08/11/2023 Soil 13/11/2023 14/11/2023 20 <0.4	224 0.05-0.1 08/11/2023 Soil 13/11/2023 14/11/2023 76 0.7	225 0.2-0.3 08/11/2023 Soil 13/11/2023 14/11/2023 23 <0.4	226 0.1-0.15 08/11/2023 Soil 13/11/2023 14/11/2023 5 <0.4				
Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Arsenic Cadmium Chromium	- - mg/kg mg/kg mg/kg	222 0.05-0.1 08/11/2023 Soil 13/11/2023 14/11/2023 27 <0.4 25	223 0.1-0.2 08/11/2023 Soil 13/11/2023 14/11/2023 20 <0.4 27	224 0.05-0.1 08/11/2023 Soil 13/11/2023 14/11/2023 76 0.7 35	225 0.2-0.3 08/11/2023 Soil 13/11/2023 14/11/2023 23 <0.4 32	226 0.1-0.15 08/11/2023 Soil 13/11/2023 14/11/2023 5 <0.4 26				

mg/kg

mg/kg

mg/kg

14

630

110

14

400

73

13

2,100

230

16

2,000

110

Nickel

Zinc

Manganese

18

640

47

Acid Extractable metals in soil		
Our Reference		337513-11
Your Reference	UNITS	218 - [TRIPLICATE]
Depth		0.1-0.2
Date Sampled		08/11/2023
Type of sample		Soil
Date prepared	-	13/11/2023
Date analysed	-	14/11/2023
Arsenic	mg/kg	99
Cadmium	mg/kg	0.4
Chromium	mg/kg	27
Copper	mg/kg	51
Lead	mg/kg	310
Mercury	mg/kg	<0.1
Nickel	mg/kg	14
Manganese	mg/kg	530
Zinc	mg/kg	150

Misc Soil - Inorg						
Our Reference		337513-2	337513-4	337513-5	337513-6	337513-8
Your Reference	UNITS	218	220	221	222	224
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.05-0.1	0.05-0.1
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Date analysed	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg		
Our Reference		337513-10
Your Reference	UNITS	226
Depth		0.1-0.15
Date Sampled		08/11/2023
Type of sample		Soil
Date prepared	-	13/11/2023
Date analysed	-	13/11/2023
Total Phenolics (as Phenol)	mg/kg	<5

Moisture						
Our Reference		337513-1	337513-2	337513-3	337513-4	337513-5
Your Reference	UNITS	217	218	219	220	221
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2	0.1-0.2
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023
Date analysed	-	13/11/2023	13/11/2023	13/11/2023	13/11/2023	13/11/2023
Moisture	%	4.3	15	12	5.1	4.0
Moisture						
Our Reference						
		337513-6	337513-7	337513-8	337513-9	337513-10
Your Reference	UNITS	337513-6 222	337513-7 223	337513-8 224	337513-9 225	337513-10 226
	UNITS					
Your Reference	UNITS	222	223	224	225	226
Your Reference Depth	UNITS	222 0.05-0.1	223 0.1-0.2	224 0.05-0.1	225 0.2-0.3	226 0.1-0.15
Your Reference Depth Date Sampled	UNITS -	222 0.05-0.1 08/11/2023	223 0.1-0.2 08/11/2023	224 0.05-0.1 08/11/2023	225 0.2-0.3 08/11/2023	226 0.1-0.15 08/11/2023
Your Reference Depth Date Sampled Type of sample		222 0.05-0.1 08/11/2023 Soil	223 0.1-0.2 08/11/2023 Soil	224 0.05-0.1 08/11/2023 Soil	225 0.2-0.3 08/11/2023 Soil	226 0.1-0.15 08/11/2023 Soil

Asbestos ID - soils						
Our Reference		337513-2	337513-4	337513-5	337513-6	337513-8
Your Reference	UNITS	218	220	221	222	224
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.05-0.1	0.05-0.1
Date Sampled		08/11/2023	08/11/2023	08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Sample mass tested	g	Approx. 75g	Approx. 60g	Approx. 85g	Approx. 65g	Approx. 65g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils		
Our Reference		337513-10
Your Reference	UNITS	226
Depth		0.1-0.15
Date Sampled		08/11/2023
Type of sample		Soil
Date analysed	-	17/11/2023
Sample mass tested	g	Approx. 65g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO
Trace Analysis	-	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or
	GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil	Duplicate					Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]	
Date extracted	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023		
Date analysed	-			17/11/2023	2	17/11/2023	17/11/2023		17/11/2023		
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	2	<25	<25	0	97		
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	2	<25	<25	0	97		
Benzene	mg/kg	0.2	Org-023	<0.2	2	<0.2	<0.2	0	93		
Toluene	mg/kg	0.5	Org-023	<0.5	2	<0.5	<0.5	0	90		
Ethylbenzene	mg/kg	1	Org-023	<1	2	<1	<1	0	95		
m+p-xylene	mg/kg	2	Org-023	<2	2	<2	<2	0	103		
o-Xylene	mg/kg	1	Org-023	<1	2	<1	<1	0	96		
Naphthalene	mg/kg	1	Org-023	<1	2	<1	<1	0	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-023	86	2	81	81	0	85		

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023	
Date analysed	-			15/11/2023	2	15/11/2023	15/11/2023		15/11/2023	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	2	<50	<50	0	138	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	2	<100	<100	0	125	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	2	<100	<100	0	129	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	2	<50	<50	0	138	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	2	<100	<100	0	125	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	2	<100	<100	0	129	
Surrogate o-Terphenyl	%		Org-020	97	2	90	92	2	103	

QUALI	TY CONTRO			Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023	
Date analysed	-			16/11/2023	2	16/11/2023	16/11/2023		16/11/2023	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	118	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	131	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	113	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	122	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	129	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	123	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	109	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	2	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	2	<0.05	<0.05	0	86	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	118	2	113	111	2	118	

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023	
Date analysed	-			16/11/2023	2	16/11/2023	16/11/2023		16/11/2023	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	128	
НСВ	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	120	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	123	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	105	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	118	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	133	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	128	
Endrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	61	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	110	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	124	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	129	2	124	121	2	126	

QUALITY CONTRC	L: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023	
Date analysed	-			16/11/2023	2	16/11/2023	16/11/2023		16/11/2023	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	77	
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Phorate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	110	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	87	
Malathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	77	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	110	
Fenthion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Parathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	91	
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Methidathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	92	
Phosalone	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	129	2	124	121	2	126	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023	
Date analysed	-			16/11/2023	2	16/11/2023	16/11/2023		16/11/2023	
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	125	
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021/022/025	129	2	124	121	2	126	

QUALITY CONT	ROL: Acid E	xtractabl		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date prepared	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023	
Date analysed	-			14/11/2023	2	14/11/2023	14/11/2023		14/11/2023	
Arsenic	mg/kg	4	Metals-020	<4	2	120	47	87	107	
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	100	
Chromium	mg/kg	1	Metals-020	<1	2	23	26	12	103	
Copper	mg/kg	1	Metals-020	<1	2	160	27	142	104	
Lead	mg/kg	1	Metals-020	<1	2	910	250	114	104	
Mercury	mg/kg	0.1	Metals-021	<0.1	2	<0.1	<0.1	0	106	
Nickel	mg/kg	1	Metals-020	<1	2	14	14	0	103	
Manganese	mg/kg	1	Metals-020	<1	2	540	500	8	118	
Zinc	mg/kg	1	Metals-020	<1	2	140	110	24	101	

QUALITY	CONTROL	Misc Soi		Duj	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023	[NT]
Date analysed	-			13/11/2023	2	13/11/2023	13/11/2023		13/11/2023	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	2	<5	<5	0	103	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 337513-2 for As, Cu and Pb. Therefore a triplicate result has been issued as laboratory sample number 337513-11.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to ASB-001 asbestos subsampling procedure. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab/MPL recommends supplying 40-60g or 500ml of sample in its own container.

Note: Samples 337513-2, 4, 5, 6, 8, 10 were sub-sampled from bags provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Kenton Horsley

Sample Login Details	
Your reference	224779.00, Googong
Envirolab Reference	337513
Date Sample Received	10/11/2023
Date Instructions Received	10/11/2023
Date Results Expected to be Reported	17/11/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	10 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils
217-0.1-0.2	 ✓ 	\checkmark	\checkmark				\checkmark		
218-0.1-0.2	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
219-0.1-0.2	\checkmark	\checkmark	\checkmark				\checkmark		
220-0.1-0.2	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark
221-0.1-0.2	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
222-0.05-0.1	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark
223-0.1-0.2	✓	\checkmark	✓				✓		
224-0.05-0.1	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	✓	\checkmark
225-0.2-0.3	✓	\checkmark	✓				✓		
226-0.1-0.15	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	✓	\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Douglas Partners Geotechnics | Environment | Groundwater

-

CHAIN OF CUSTODY DESPATCH SHEET

Proje	ct No:	224779.	00		Suburk		Googor	ng						To:	Envirola	ab Servi	ces		
Proje	ct Manager:	Kenton I	lorsley		Order	Number:		_		Sampl	er:	HS			12 Ash	ley St, C	hatswo	od NSW 2067	
Email				louglaspart						ers.com.	au			Attn:					
	around time:			72 hour	48 hour			Same da	· · · · · · · · · · · · · · · · · · ·				_		<u>, ,</u>	10 6200		samplereceipt@envirolab.com.au	
Prior	Storage: 🗹 F	ridge 🗋	Freezer	Esky		Do samp	oles co	ntain '	potent	ial' HBI	M? 🔽	No [Yes	(If YE	S, then h	andle, tr	ansport a	and store in accordance with FPM HAZID)	
	Sa	mple ID		pled	Sample Type	Container Type			_			Analytes	;	-					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Comb 8A (include Mn)	Comb 3 (include Mn)										Notes/ Preservation/ Additional Requirements	
- }	217	0.1	0.2	8/11/23	s	G,P		x										(50 g asbestos analysis)	
2	218	0.1	0.2	8/11/23	S	G,P	х									_			
NR	218	0.4	0.5	8/11/23	s	G,P													
3	219	0.1	0.2	8/11/23	S	Ġ,P		x							ц	wirolab S	ervices		
A	220	0.1	0.2	8/11/23	s	G,P	x							ENVIROL	AB Chat	12 A:	hiey 31		
NRO	220	0.25	0.3	8/11/23	s	G,P									: ? ?	wood NS h: (02) 95 75	3		
5	221	0.1	0.2	8/11/23	S	G,P	x						,		acoived:	lio / 0	12%		
6	222	0.05	0.1	8/11/23	s	G,P	x												
7	223	0.1	0.2	8/11/23	S	G,P		х			-			Temp	received ved By: Cool/An	apaex	None		
ধ্ব	224	0.05	1	8/11/23	s	G,P	x						_	Sect	nity. Intal	epack UBroken			
9	225	0.2	0.3	8/11/23	s	G,P		х											
(0	226	0.1	0.15	8/11/23	s	G,P	x												
	R1-081123			8/11/23	s	G,P												Send to ALS for analysis: 9 metals, TRH, BTEX	
														[<u> </u>	
	s to analyse:											-				RECEI			
	per of sample		_			Transpo	rted to	labora	atory b	FEDx/T	NT							2513	
	results to:		Partners													/ed by:			
Addre		Unit 2, 73	Sheppard	Street, Hurr	e ACT 26		(02) 62	60 2788							Date 8	Time:	10	11/23 1040	
Relinquished by: Date: Signed: Signed								1. ph	<u> </u>										

•

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	ES2339220							
Client Contact Address	 DOUGLAS PARTNERS PTY LTD MR KENTON HORSLEY Unit 2, 73 Sheppard Street, Hume 2620 	Contact: CusAddress: 277	ironmental Division Sydney tomer Services EM -289 Woodpark Road Smithfield V Australia 2164					
E-mail	kenton.horsley@douglaspartners.co m.au	E-mail : ALS	Enviro.Melbourne@alsglobal.com					
Telephone	: +61 02 4271 1836	Telephone : +61	3 8549 9600					
Facsimile	: +61 02 4271 1897	Facsimile : +61	-2-8784 8500					
Project	: 224779.00	Page : 1 of	: 1 of 2					
Order number	:	Quote number : EM2	2017DOUPAR0002 (EN/222)					
C-O-C number	:	QC Level : NEF	PM 2013 B3 & ALS QC Standard					
Site	: Googong							
Sampler	: HS							
Dates								
Date Samples Receiv	red : 13-Nov-2023 15:45	Issue Date	: 13-Nov-2023					
Client Requested Du Date	e : 20-Nov-2023	Scheduled Reporting Date	20-Nov-2023					
Delivery Deta	ls							
Mode of Delivery	: Carrier	Security Seal	: Not Available					
No. of coolers/boxes	: 1	Temperature	: 11.3, 11.6, 13.1'C - Ice Bricks present					
Receipt Detail	:	No. of samples received / ana	•					

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

component Sampling date / Sample ID Sample ID Laboratory sample Sampling date / Sample ID Sample ID ID time Sample ID ES2339220-001 08-Nov-2023 00:00 R1-081123

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE INVOICES		
- A4 - AU Tax Invoice (INV)	Email	apinvoices@douglaspartners.com.a u
DAVID WALKER		
 *AU Certificate of Analysis - NATA (COA) 	Email	david.walker@douglaspartners.com.
		au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	david.walker@douglaspartners.com. au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	david.walker@douglaspartners.com. au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	david.walker@douglaspartners.com. au
- Chain of Custody (CoC) (COC)	Email	david.walker@douglaspartners.com. au
- EDI Format - XTab (XTAB)	Email	david.walker@douglaspartners.com. au
KENTON HORSLEY		
- *AU Certificate of Analysis - NATA (COA)	Email	kenton.horsley@douglaspartners.co m.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	kenton.horsley@douglaspartners.co m.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	kenton.horsley@douglaspartners.co m.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	kenton.horsley@douglaspartners.co m.au
- Chain of Custody (CoC) (COC)	Email	kenton.horsley@douglaspartners.co m.au
- EDI Format - XTab (XTAB)	Email	kenton.horsley@douglaspartners.co m.au

Metals

SOIL - S-05 TRH/BTEXN/8 N

CHAIN OF CUSTODY DESPATCH SHEET

Projec	st No:	224779.0	00		Suburk	0:	Googor	ng		To:	To: Envirolab Services			
Projec	ct Manager:	Kenton H	Horsley		Order I	Number:		an di kanan di Karan di Kanan di Kanan di Kanan di Karan	Sampler: HS		12 Ashley St, Chatswood NSW 2067			
Email:		kenton.h	orsley@d	louglaspart	ners.com	n.au; david	.walker(@douglaspar	ners.com.au	Attn:	Sample	Receip	t	
Turna	round time:	✓ Standa	rd 🗌	72 hour	48 hour	24 ho	ur	Same day			(02) 99	10 6200		samplereceipt@envirolab.com.au
Prior S	Storage: 🔽 Fi	ridge	Freezer	Esky	Shelf	Do samp	oles co	ntain 'pote	ntial' HBM? 🗹 No 📃 Yes	(If YE	ES, then h	andle, tra	ansport a	nd store in accordance with FPM HAZID)
	Sar	mple ID		oled	Sample Type	Container Type			Analytes		-			
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Comb 8A (include Mn)	Comb 3 (include Mn)	Environmental Division Sydney Work Order Reference ES2339220)				Notes/ Preservation/ Additional Requirements
1	217	0.1	0.2	8/11/23	S	G,P		x	EIII BUZ, NOC BUSC EI III					(50 g asbestos analysis)
2	218	0.1	0.2	8/11/23	S	G,P	х							Relinguished by ILS SYD
NR	218	0.4	0.5	8/11/23	S	G,P								Relinguished by ILS SYD Grace Ung 13M123 1100
3	219	0.1	0.2	8/11/23	S	G,P		x	Telephone : + 61-2-8784 8555		E	virolab S	ervices	13/1123 1100
A	220	0.1	0.2	8/11/23	S	G,P	х			ENVIRO	La	12 As swood NS h: (02) 99	hley SI W 2067 40 6200	Such
NRO	220	0.25	0.3	8/11/23	S	G,P				Jobh	10:33		13	
5	221	0.1	0.2	8/11/23	S	G,P	х				nanoived:	10/0	123	
6	222	0.05	0.1	8/11/23	S	G,P	х			Time	Received	ba		
7	223	0.1	0.2	8/11/23	S	G,P		x		Tem	Coolla	epaek	None	
8	224	0.05	1	8/11/23	S	G,P	х			Sec	curity. Inta	BIOKET		
9	225	0.2	0.3	8/11/23	S	G,P		x						
(0	226	0.1	0.15	8/11/23	S	G,P	x							
0	R1-081123			8/11/23	S	G,P								Send to ALS for analysis: 9 metals, TRH, BTEX
Metals	s to analyse:							X	10 ¹⁰		Standard Andrew Statements	RECEI	No. A CONTRACTOR OF CONTRACT	
Numb	er of sample	s in cont	tainer:			Transpo	orted to	laborator	FEDx/TNT י		Lab R	ef. No:	33	7513
Send	results to:		Partners									ved by		
Addre	SS:	Unit 2, 73	Sheppard	Street, Hum	ne ACT 26	Phone:	(02) 62	60 2788			Date	& Time	10	11/23 1040
Relind	quished by:					Date:			Signed:		Signe	d: 12	<	

Page 1 of 1

Rec: ZRW 13/11/23 1545

CERTIFICATE OF ANALYSIS Page Work Order : ES2339220 : 1 of 5 Client : DOUGLAS PARTNERS PTY LTD Laboratory : Environmental Division Sydney Contact : MR KENTON HORSLEY Contact : Customer Services EM Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : Unit 2, 73 Sheppard Street, Hume 2620 Telephone : +61 02 4271 1836 Telephone : +61 3 8549 9600 Project · 224779.00 **Date Samples Received** : 13-Nov-2023 15:45 Order number Date Analysis Commenced : -----: 15-Nov-2023 C-O-C number Issue Date : -----: 20-Nov-2023 17:39 Sampler : HS Site : Googong Quote number : EN/222 "hilahow Accreditation No. 825 No. of samples received : 1 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EG005T: Poor precision was obtained for Nickel on sample ES2339194 # 009. Confirmed by re-digestion and reanalysis.

Page : 3 of 5 Work Order : ES2339220 Client : DOUGLAS PARTNERS PTY LTD Project : 224779.00

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	R1-081123	 	
		Sampli	ng date / time	08-Nov-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2339220-001	 	
				Result	 	
EA055: Moisture Content						
Moisture Content		1.0	%	10.9	 	
EG005(ED093)T: Total Metals by ICP-A	ES					
Arsenic	7440-38-2	5	mg/kg	15	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	18	 	
Copper	7440-50-8	5	mg/kg	8	 	
Lead	7439-92-1	5	mg/kg	22	 	
Nickel	7440-02-0	2	mg/kg	8	 	
Zinc	7440-66-6	5	mg/kg	47	 	
EG035T: Total Recoverable Mercury b	y FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP080/071: Total Petroleum Hydrocart	oons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	 	
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
 >C10 - C40 Fraction (sum) 		50	mg/kg	<50	 	
 >C10 - C16 Fraction minus Naphthalene (F2) 		50	mg/kg	<50	 	
EP080: BTEXN						

Page : 4 of 5 Work Order : ES2339220 Client : DOUGLAS PARTNERS PTY LTD Project : 224779.00

Analytical Results

				1						
		Sample ID	R1-081123							
	Sampli	ng date / time	08-Nov-2023 00:00							
CAS Number LOR Unit		ES2339220-001								
			Result							
EP080: BTEXN - Continued										
71-43-2	0.2	mg/kg	<0.2							
108-88-3	0.5	mg/kg	<0.5							
100-41-4	0.5	mg/kg	<0.5							
108-38-3 106-42-3	0.5	mg/kg	<0.5							
95-47-6	0.5	mg/kg	<0.5							
	0.2	mg/kg	<0.2							
	0.5	mg/kg	<0.5							
91-20-3	1	mg/kg	<1							
17060-07-0	0.2	%	90.9							
2037-26-5	0.2	%	94.6							
460-00-4	0.2	%	108							
	71-43-2 108-88-3 100-41-4 108-38-3 106-42-3 95-47-6 95-47-6 95-47-6 91-20-3 91-20-3 17060-07-0 2037-26-5	CAS Number LOR 71-43-2 0.2 108-88-3 0.5 100-41-4 0.5 108-38-3 106-42-3 95-47-6 0.5 0.2 0.5 91-20-3 1 17060-07-0 0.2 2037-26-5 0.2	71-43-2 0.2 mg/kg 108-88-3 0.5 mg/kg 100-41-4 0.5 mg/kg 108-38-3 0.5 mg/kg 108-38-3 0.5 mg/kg 95-47-6 0.5 mg/kg 0.2 mg/kg 95-47-6 0.5 mg/kg 0.2 mg/kg 0.5 mg/kg 91-20-3 1 mg/kg 17060-07-0 0.2 % 2037-26-5 0.2 %	Sampling date / time 08-Nov-2023 00:00 CAS Number LOR Unit ES2339220-001 CAS Number LOR Unit ES2339220-001 Result Result Result 71-43-2 0.2 mg/kg <0.2 108-88-3 0.5 mg/kg <0.5 100-41-4 0.5 mg/kg <0.5 108-38-3 106-42-3 0.5 mg/kg <0.5 95-47-6 0.5 mg/kg <0.5 95-47-6 0.5 mg/kg <0.5 95-47-6 0.5 mg/kg <0.5 91-20-3 1 mg/kg <1 17060-07-0 0.2 % 90.9 2037-26-5 0.2 % 94.6	Sampling date / time 08-Nov-2023 00:00 CAS Number LOR Unit ES2339220-001 Result Result 71-43-2 0.2 mg/kg <0.2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)				
Compound	CAS Number	Low	High			
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	63	125			
Toluene-D8	2037-26-5	67	124			
4-Bromofluorobenzene	460-00-4	66	131			

QUALITY CONTROL REPORT

Work Order	: ES2339220	Page	: 1 of 5	
Client Contact	: DOUGLAS PARTNERS PTY LTD : MR KENTON HORSLEY	Laboratory Contact	: Environmental Division Sy : Customer Services EM	
Address	: Unit 2, 73 Sheppard Street, Hume 2620	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
Telephone	: +61 02 4271 1836	Telephone	: +61 3 8549 9600	
Project	: 224779.00	Date Samples Received	: 13-Nov-2023	AMILIU.
Order number	:	Date Analysis Commenced	: 15-Nov-2023	
C-O-C number	:	Issue Date	20-Nov-2023	NATA
Sampler	: HS			Hac-MRA NATA
Site	: Googong			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES(QC Lot: 5429371)							
ES2339194-009	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	13	11	21.6	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	48	# 61	23.8	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	22	19	18.3	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	12	11	9.1	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	75	64	15.4	0% - 50%
ES2339275-003	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	12	10	17.1	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	37	34	6.7	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	26	25	3.9	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	17	12	37.6	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	44	36	21.6	No Limit
EA055: Moisture Co	ntent (Dried @ 105-110°	C) (QC Lot: 5429383)					,		
ES2339194-013	Anonymous	EA055: Moisture Content		0.1 (1.0)*	%	2.5	2.8	8.6	No Limit
ES2339275-003	Anonymous	EA055: Moisture Content		0.1 (1.0)*	%	7.8	7.8	0.0	No Limit
EG035T: Total <u>Reco</u>	overable Mercury by FIM	S (QC Lot: 5429370)				·			
ES2339194-009	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	<0.1	0.0	No Limit
ES2339275-003	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit

Page	: 3 of 5
Work Order	: ES2339220
Client	: DOUGLAS PARTNERS PTY LTD
Project	224779.00

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	1	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pe	troleum Hydrocarbo	ns (QC Lot: 5424754)							
ES2339219-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbo	ns (QC Lot: 5425896)							
ES2339219-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2339416-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocar	bons - NEPM 2013 Fractions (QC Lot: 5424754)							
ES2339219-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocar	bons - NEPM 2013 Fractions (QC Lot: 5425896)							
ES2339219-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2339416-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (QC	Lot: 5425896)								
ES2339219-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2339416-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES(QCLo	t: 5429371)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	110	88.0	113	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	102	70.0	130	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	116	68.0	132	
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	111	89.0	111	
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	101	82.0	119	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	91.6	80.0	120	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	89.5	66.0	133	
EG035T: Total Recoverable Mercury by FIMS (Q	CLot: 5429370)					- · · ·			
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	96.0	70.0	125	
EP080/071: Total Petroleum Hydrocarbons (QCL	ot: 5424754)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	104	75.0	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	99.1	77.0	131	
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	100	71.0	129	
EP080/071: Total Petroleum Hydrocarbons (QCL	ot: 5425896)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	95.3	72.2	131	
EP080/071: Total Recoverable Hydrocarbons - NE	EPM 2013 Fractions (QCLc	ot: 5424754)				· ·			
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	106	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	100	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	99.6	63.0	131	
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions (QCLc	ot: 5425896)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	84.2	72.4	133	
EP080: BTEXN (QCLot: 5425896)					•	· · · · · · · · · · · · · · · · · · ·			
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	95.1	76.0	124	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	93.6	78.5	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	97.2	77.4	121	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	88.4	78.2	121	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	97.9	81.3	121	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	104	78.8	122	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 5429371)								
ES2339194-009	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	100.0	70.0	130		
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.7	70.0	130		
		EG005T: Chromium	7440-47-3	50 mg/kg	103	68.0	132		
		EG005T: Copper	7440-50-8	250 mg/kg	97.7	70.0	130		
		EG005T: Lead	7439-92-1	250 mg/kg	93.6	70.0	130		
		EG005T: Nickel	7440-02-0	50 mg/kg	127	70.0	130		
		EG005T: Zinc	7440-66-6	250 mg/kg	85.7	66.0	133		
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 5429370)								
ES2339194-009	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	97.2	70.0	130		
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 5424754)			Ì					
ES2339219-001	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	118	73.0	137		
		EP071: C15 - C28 Fraction		3100 mg/kg	110	53.0	131		
		EP071: C29 - C36 Fraction		2060 mg/kg	117	52.0	132		
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 5425896)								
ES2339219-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	83.2	60.4	142		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 5424754)		Ì					
ES2339219-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	106	73.0	137		
		EP071: >C16 - C34 Fraction		4320 mg/kg	117	53.0	131		
		EP071: >C34 - C40 Fraction		890 mg/kg	111	52.0	132		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 5425896)							
ES2339219-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	81.5	61.1	142		
EP080: BTEXN (Q	CLot: 5425896)			·	i i				
ES2339219-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	102	62.1	122		
		EP080: Toluene	108-88-3	2.5 mg/kg	98.9	66.6	119		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	104	67.4	123		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	92.2	66.4	121		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	102	70.7	121		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	89.2	61.1	115		

	QA/QC Compliance A	QA/QC Compliance Assessment to assist with Quality Review Page :1 of 4								
Work Order	: ES2339220	Page	: 1 of 4							
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney							
Contact	: MR KENTON HORSLEY	Telephone	: +61 3 8549 9600							
Project	: 224779.00	Date Samples Received	: 13-Nov-2023							
Site	: Googong	Issue Date	: 20-Nov-2023							
Sampler	: HS	No. of samples received	: 1							
Order number	:	No. of samples analysed	: 1							

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2339194009	Anonymous	Nickel	7440-02-0	23.8 %	0% - 20%	RPD exceeds LOR based limits

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding tim
Method		Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055) R1-081123	08-Nov-2023				16-Nov-2023	22-Nov-2023	1
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) R1-081123	08-Nov-2023	16-Nov-2023	06-May-2024	1	17-Nov-2023	06-May-2024	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) R1-081123	08-Nov-2023	16-Nov-2023	06-Dec-2023	1	20-Nov-2023	06-Dec-2023	1
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071) R1-081123	08-Nov-2023	15-Nov-2023	22-Nov-2023	1	16-Nov-2023	25-Dec-2023	1
Soil Glass Jar - Unpreserved (EP080) R1-081123	08-Nov-2023	15-Nov-2023	22-Nov-2023	1	17-Nov-2023	22-Nov-2023	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071) R1-081123	08-Nov-2023	15-Nov-2023	22-Nov-2023	~	16-Nov-2023	25-Dec-2023	1
Soil Glass Jar - Unpreserved (EP080) R1-081123	08-Nov-2023	15-Nov-2023	22-Nov-2023	1	17-Nov-2023	22-Nov-2023	1
EP080: BTEXN			· ·		·	·	
Soil Glass Jar - Unpreserved (EP080) R1-081123	08-Nov-2023	15-Nov-2023	22-Nov-2023	1	17-Nov-2023	22-Nov-2023	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification .
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification
Analytical Methods Metho		QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions			
Moisture Content EA055			In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).			
Total Metals by ICP-AES EG005T		SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)			
Total Mercury by FIMS EG035T SOIL		SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)			
TRH - Semivolatile Fraction	EP071	SOIL	L In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).			
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.			
Preparation Methods	Method	Matrix	Method Descriptions			
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).			
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.			
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.			

CERTIFICATE OF ANALYSIS 338375

Client Details	
Client	Douglas Partners Canberra
Attention	Kenton Horsley
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details	
Your Reference	224779.00 Googong
Number of Samples	2 Soil
Date samples received	22/11/2023
Date completed instructions received	22/11/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	23/11/2023	
Date of Issue	23/11/2023	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By Hannah Nguyen, Metals Supervisor Tim Toll, Chemist (FAS) <u>Authorised By</u> Nancy Zhang, Laboratory Manager

Acid Extractable metals in soil				
Our Reference		338375-1	338375-2	338375-3
Your Reference	UNITS	218	220	218 - [TRIPLICATE]
Depth		0.4-0.5	0.25-0.3	0.4-0.5
Date Sampled		08/11/2023	08/11/2023	08/11/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023
Arsenic	mg/kg	17	93	20
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	28	54	44
Copper	mg/kg	97	33	120
Lead	mg/kg	11	230	15
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	21	10	25
Zinc	mg/kg	49	120	57
Manganese	mg/kg	320	1,100	360

Moisture			
Our Reference		338375-1	338375-2
Your Reference	UNITS	218	220
Depth		0.4-0.5	0.25-0.3
Date Sampled		08/11/2023	08/11/2023
Type of sample		Soil	Soil
Date prepared	-	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023
Moisture	%	10	18

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			23/11/2023	1	23/11/2023	23/11/2023		23/11/2023	
Date analysed	-			23/11/2023	1	23/11/2023	23/11/2023		23/11/2023	
Arsenic	mg/kg	4	Metals-020	<4	1	17	22	26	103	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	98	
Chromium	mg/kg	1	Metals-020	<1	1	28	37	28	102	
Copper	mg/kg	1	Metals-020	<1	1	97	120	21	97	
Lead	mg/kg	1	Metals-020	<1	1	11	31	95	108	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	127	
Nickel	mg/kg	1	Metals-020	<1	1	21	26	21	97	
Zinc	mg/kg	1	Metals-020	<1	1	49	67	31	100	
Manganese	mg/kg	1	Metals-020	<1	1	320	390	20	93	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions	
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.	
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.	
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.	
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.	
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.	

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 338375-1 for Pb. Therefore a triplicate result has been issued as laboratory sample number 338375-3.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Kenton Horsley

Sample Login Details	
Your reference	224779.00 Googong
Envirolab Reference	338375
Date Sample Received	22/11/2023
Date Instructions Received	22/11/2023
Date Results Expected to be Reported	23/11/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	2 Soil
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	11
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Acid Extractable metalsin soil
218-0.4-0.5	\checkmark
220-0.25-0.3	✓

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Projec	t No:	224779.	00		Suburb):	Googor							To:	Envirola	ab Serv	ices		
Projec	t Manager:					Number:				Samp		HS			12 Ash	ley St, (Chatswo	ood NSW 2067	
Email:				louglaspar						ers.com	.au			Attn:	Sample	Recei	ot		
Turna	round time:	🗆 Standa	rd D7	'2 hour 🛛 🗍		🖸 24 ho			-		_				(02) 99	10 620	0	samplereceipt@envirolab.com.au	
Prior S	Storage: 🗹 Fri	idge 🗆 F	reezer	🗆 Esky 🛛 I	🗆 Shelf	Do sam	ples co	ntain	'potent	ial' HB	M? 🖸	No [□ Yes	(If YI	ES, then I	handle, i	ransport	and store in accordance with FPM HAZI	D)
	Sai	mple ID		oled	Sample Type	Container Type						Analytes	8		_		_		
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Heavy metals (include Mn)											Notes/ Preservation/ Addition Requirements	al
1	218	0.4	0.5	8/11/23	S	G&P	x												
2	220	0.25	0.3	8/11/23	S	G&P	X												
	-														<u> </u>				
		1																	
		-																	
		<u> -</u>									ļ								
																ENVIR		-Envirolab Services	
┝━━┩		<u> </u>														<u> </u>	+/ 0	hatswood NSW 2067	
																Job I	0: 3	Ph: (02) 9910 6200	
1									_			_				Date I	Received	23/11/22 10 00 2	2/1/22
																Recei	received ved By:	Pert	` [`]
																Terno:	CoolAn ig: Ice/Co	bient	
		<u>+ -</u>							†							Secur	ity Intact	Boken/None	
		+																	
Metals	to analyse:	<u> </u>	As, Cd.	⊥ Сг, Сu, Р	⊥↓ b, Hg. №	l In, Ni, Zı	Ll 1		<u> </u>	<u> </u>	I	L		I		RECE	<u>⊥</u> IPT	<u> </u>	
	er of sample					Transpo		labor	atory b	y:	FEDx/1	INT						8375	
	results to:		Partners			•				<u> </u>					Receiv	ved by	: Par	- ELS	
Addre				Street, Hun			(02) 626	50 278	8						Date 8	Time	: 231		/11/23
Reling	uished by:					Date:				Signe	d:				Signed	d: 02			

CERTIFICATE OF ANALYSIS 337513-A

Client Details	
Client	Douglas Partners Canberra
Attention	Emily Bodel
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details	
Your Reference	<u>224779.00, Googong</u>
Number of Samples	Additional TCLP analysis
Date samples received	10/11/2023
Date completed instructions received	20/11/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	21/11/2023				
Date of Issue	21/11/2023				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Loren Bardwell, Development Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

Metals from Leaching Fluid pH 2.9 or 5		
Our Reference		337513-A-2
Your Reference	UNITS	218
Depth		0.1-0.2
Date Sampled		08/11/2023
Type of sample		Soil
Date extracted	-	21/11/2023
Date analysed	-	21/11/2023
pH of soil for fluid# determ.	pH units	7.2
pH of soil TCLP (after HCl)	pH units	2.4
Extraction fluid used		1
pH of final Leachate	pH units	5.6
Lead	mg/L	<0.03

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.

QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			21/11/2023	[NT]		[NT]	[NT]	21/11/2023	[NT]
Date analysed	-			21/11/2023	[NT]		[NT]	[NT]	21/11/2023	[NT]
Lead	mg/L	0.03	Metals-020	<0.03	[NT]	[NT]	[NT]	[NT]	103	[NT]

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Emily Bodel

Sample Login Details	
Your reference	224779.00, Googong
Envirolab Reference	337513-A
Date Sample Received	10/11/2023
Date Instructions Received	20/11/2023
Date Results Expected to be Reported	21/11/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	Additional TCLP analysis
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	12
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst									
Phone: 02 9910 6200	Phone: 02 9910 6200									
Fax: 02 9910 6201	Fax: 02 9910 6201									
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead	On Hold
217-0.1-0.2						✓
218-0.1-0.2	\checkmark	✓	✓	✓	✓	
219-0.1-0.2						\checkmark
220-0.1-0.2						\checkmark
221-0.1-0.2						✓
222-0.05-0.1						✓
223-0.1-0.2						✓
224-0.05-0.1						✓
225-0.2-0.3						✓
226-0.1-0.15						✓
218 - [TRIPLICATE]-0.1-0.2						\checkmark

The '\sciller' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix K

Data Quality Assurance and Quality Control Site Audit Statement

1. Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included at the end of this appendix.

Item	Evaluation / acceptance criteria	Compliance
Analytical laboratories used	National Authority for Testing Association (NATA) accreditation	С
Holding times	Various based on type of analysis	PC
Intra-laboratory	5% of primary samples;	С
replicates	<30% RPD	С
Inter-laboratory	5% of primary samples;	NC
replicates	<30% RPD	С
Trip Spikes	1 per sampling event; 60-140% recovery	NC
Trip Blanks	1 per sampling event; <pql< td=""><td>NC</td></pql<>	NC
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Laboratory Duplicate	1 per lab batch; As laboratory certificate	PC
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	PC
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting standard operating procedure (SOP) for all aspects of the sampling field work	С

Table 1: Field and laboratory quality control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

It is noted that results for replicate sample R3 were not recorded due to an administrative error. As a result, inter-laboratory testing was conducted at a frequency of less than 5%. The low frequency of inter-laboratory replicate testing (3%) is not considered to affect the overall assessment.

The absence of trip spikes and trip blanks are not considered to affect the overall assessment, particularly as the potential for volatile contaminants being present in soil at the site is low.

A review of the laboratory certificates was conducted, and the following comments were made by the laboratory:

- The laboratory acceptance criteria has been exceeded for 335052-1 for Arsenic (As), Copper (Cu), Lead (Pb) and Manganese (Mn). Therefore a triplicate result has been issued as laboratory sample number 335052-52;
- Percent spike recovery for manganese in samples 335052-47 and 335052-6 is not applicable due to the high concentration of the element in the sample. However, an acceptable recovery was obtained for the laboratory control sample (LCS);
- The laboratory acceptance criteria has been exceeded for 337513-2 for Arsenic (As), Copper (Cu) and Lead (Pb). Therefore, a triplicate result has been issued as laboratory sample number 337513-11; and
- The laboratory acceptance criteria has been exceeded for 338375-1 for Lead (Pb). Therefore a triplicate result has been issued as laboratory sample number 338375-3.

Analysis for TRH, BTEX, PAH, OCP and OPP was undertaken slightly outside recommended holding times for some samples. This and the above-listed non-compliances at the laboratory are not considered to affect the overall assessment of analytical results.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

2. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQI) as outlined in NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present on-site;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Table 2: Data quality indicators

Data quality indicator	Method(s) of achievement
Completeness	Systematic and selected target locations sampled.
	Preparation of borehole logs, test pit logs, sample location plan and chain of custody (CoC) records.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern (CoPC) identified in the conceptual site model (CSM).
	Completion of CoC documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced sampler used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQO.
	Samples were extracted and analysed for all analytes within holding times.
	Samples were analysed in accordance with the CoC.
Precision	Field staff followed standard operating procedures.
	Acceptable RPD between original samples and replicates.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQI have been generally complied with.

Page 3 of 4

3. Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQI it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

4. References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Table QA1: Relative Percentage Difference Results for Replicate Samples

			Metals								TRH						втех				PAH	
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Manganese	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
R1	0.2 m	26/09/23	8	<0.4	46	4	9	<0.1	17	33	350	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1
215	0.2 m	26/09/23	9	<0.4	41	4	10	<0.1	16	31	410	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1
		Difference	1	0	5	0	1	0	1	2	60	0	0	0	0	0	0	0	0	0	0	0
		RPD	12%	0%	11%	0%	11%	0%	6%	6%	16%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
					ſ								I	I	I	I		I	1	I	I	
R2	0.2 m	26/09/23	15	<0.4	39	38	6	<0.1	18	35	200	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1
212	0.2 m	26/09/23	16	<0.4	45	48	7	<0.1	21	41	230	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1
		Difference	1	0	6	10	1	0	3	6	30	0	0	0	0	0	0	0	0	0	0	0
		RPD	6%	0%	14%	23%	15%	0%	15%	16%	14%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
																			-			
R1-081123		8/11/2023	15	<1	18	8	22	<0.1	8	47	-	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<1
219		8/11/2023	15	<0.4	19	10	26	<0.1	10	47	240	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1
		Difference	0	0	1	2	1	0	2	0	-	0	0	0	0	0	0	0	0	0	0	0
		RPD	0%	0%	5%	22%	17%	0%	22%	0%	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%